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Tabu search is a "higher level" heuristic procedure for solving 
optimization problems, designed to guide other methods (or 
their component processes) to escape the trap of local optimal- 
ity. Tabu search has obtained optimal and near optimal solu- 
tions to a wide variety of classical and practical problems in ap- 
plications ranging from scheduling to telecommunications and 
from character recognition to neural networks. It uses flexible 
structures memory (to permit search information to be exploited 
more thoroughly than by rigid memory systems or memoryless 
systems), conditions for strategically constraining and freeing 
the search process (embodied in tabu restrictions and aspiration 
criteria), and memory functions of varying time spans for inten- 
sifying and diversifying the search (reinforcing attributes histor- 
ically found good and driving the search into new regions). 
Tabu search can be integrated with branch-and-bound and 
cutting plane procedures, and it has the ability to start with a 
simple implementation that can be upgraded over time to 
incorporate more advanced or specialized elements. 

T abu search is a metaheuristic that can to prevent them from becoming trapped at 
be superimposed on other procedures locally optimal solutions. The method can 
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be used to guide any process that employs 

a set of moves for transforming one solu- 
tion (or solution state) into another and 

that provides an evaluation function for 
measuring the attractiveness of these 

moves. (Examples of moves are changing 
the value assigned to a variable, adding or 
deleting an element from a set, interchang- 
ing the position of two jobs on a machine, 
and executing a pivot step. The form of the 
guidance provided by tabu search is highly 
flexible and often motivates the creation of 
new types of moves and evaluation criteria 
to take advantage of its adaptability to dif- 

ferent problem structures and strategic 
goals. 

Although still in an early stage of devel- 

opment, tabu search has enjoyed a number 
of successes. In a variety of problem set- 

tings, it has found solutions superior to the 
best previously obtained by alternative 
methods. I11 other cases, it has demon- 
strated advantages in ease of implementa- 
tion or in the ability to handle additional 
considerations (such as constraints not 

encompassed by an original problem 
formulation). 

A partial list of tabu search applications 
follows: 

- Employee scheduling [Glover and 
McMillan 19861, 

- Maximum satisfiability proble~ns 

[I-Iansen and Jaumard 19871, 
- Character recognition [Hertz and 

de Werra 19871, 
- Space planning and architectural de- 

sign [Glover, McMillan, and Novick 
19851, 

- Telecommunications path assignment 
[Oliveira and Stroud 19891, 

- I'robabilistic logic problems [Jaumard, 

Hansen, and Poggi de Aragao 19891, 

- Job shop scheduling [Eck 19891, 
- Neural network pattern recognition 

[de Werra and Hertz 19891, 
- Machine scheduling [Laguna, Barnes, 

and Glover 1989131, 
- Convoy scheduling [Bovet 

forthcoming], 

- Quadratic assignment problems 
[Skorin-Kapov 19891, 

- Network topology design [Lee 19891, 
-- Computer channel balancing [Glover 

19891, 

- Traveling salesman problems [Knox 
1989; Malek, Guruswamy, Owens, and 

Pandya 1989; Malek, Heap, Kapur, and 
Mourad 19891, 

- Graph coloring [Hertz and de Werra 

19871, 
- Graph partitioning [Wendelin 19881, 
- Nonlinear covering [Glover 19861, 
- Maximum stable set problems 

[Friden, Hertz, and de Werra 1989a, 
1989b1, and 

- Flow shop sequencing [Windmer and 
Hertz forthcoming]. 

A brief sampling of the outcomes of 
these studies suggests the potential value 
of tabu search applied in different settings. 

Glover and McMillan's [I9861 employee 
scheduling investigation solved problems 
whose integer programming formulations 
involved one to four million variables, 
requiring 22-24 minutes on an IBM PC 
microcomputer to obtain solutions within 
98 percent of an upper bound on optimal- 
ity. Jaumard, Hausen, and Poggi de 
Aragao [I9891 investigated the problen~ of 
determining the consistency of probabili- 
ties specifying whether given collections of 
clauses are true, with extensions to include 
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GLOVER 

probability intervals, conditional probabili- 
ties, and least perturbations to achieve satis- 
fiability. By integrating a tabu search ap- 

proach with an exact zero to one nonlinear 
programming procedure for generating col- 
umns of a master linear program, they 
readily solved problems with up to 140 
variables and 300 clauses, approximately 
tripling on each dimension the size of 
problems previously solved. In their space 

planning study, Glover, McMillan, and 

Novick [I9851 applied tabu search to sub- 
set clustering problems corresponding to 
zero-one mixed integer programs with over 

25,000 variables and 50,000 constraints, 
obtaining solutions in less than one minute 
on a V77 minicomputer. The resulting sys- 
tem has been implemented to improve the 
architectural design of several large space 
planning firms. 

Tabu search has found 
solutions superior to the best 
previously obtained by 
alternative methods. 
~~ - -- 

By incorporating tabu search in a neural 

network application, de Werra and Hertz 
[I9891 reduced the number of false attrac- 

tors (or parasite states) for a visual pattern 
recognition problem by 80 percent, while 
requiring only 50 learning trials out of a 
potential 500,000. In their machine sched- 
uling application Laguna, Barnes, and 
Glover [I9891 obtained optimal solutions 
to all test problems for which optimality 
could be verified by specialized branch- 
and-bound methods and obtained solu- 
tions within a few percent of an optimality 
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bound for larger problems (which the 
branch-and-bound methods could not 

handle). In a flowshop sequencing study, 
Windmer and Hertz [forthcoming] com- 
pared tabu search to a broad range of spe- 

cialized heuristics and obtained solutions 
superior to the best found by any of the 
other methods for about 90 percent of the 
test problems. Skorin-Kapov's [I9891 qua- 

dratic assignment study yielded the best 
known solutions for problems taken from 

the literature, while requiring less CPU 
time than previously reported. The method 

was used to find a solution superior to the 
best known for a classical benchmark 

problem [Steinberg 19611 and obtain solu- 
tions whose quality always equalled or 
surpassed that of solutions obtained by 
simulating annealing (an outcome also 

shared by the maximum satisfiability, 
graph coloring, and traveling salesman 

studies of Ilansen and Jaumard [1987], 
I-Iertz and de Werra [1987], and Maiek, 

Guruswamy, Owens, and Pandya [1989]). 
These and a variety of other applications 

of tabu search are surveyed in Glover 
[1989, 19901, and I-lertz and de Werra 
[forthcoming]. 

Overview 
Tabu search is founded on three primary 

themes: (1) the use of flexible attribute- 
based memory structures designed to per- 

mit evaluation criteria and historical search 
information to be exploited more thor- 
oughly than by rigid memory structures (as 
in branch-and-bound and A" search) or by 
memoryless systems (as in simulated an- 
nealing and other randomized ap- 
proaches); (2) an associated mechanism of 
control-for employing the memory struc- 
tures-based on the interplay between 
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conditions that constrain and free the 

search process (embodied in tabu restric- 
tions and aspiration criteria); and (3) the 

incorporation of memory functions of dif- 
ferent time spans, from short term to long 
term, to implement strategies for intensify- 
ing and diversifying the search. (Intensifi- 

cation strategies reinforce move combina- 
tions and solution features historically 
found good, while diversification strategies 
drive the search into new regions.) 

The core of tabu search is embedded in 
its short-term memory process, and many 

of the strategic considerations underlying 
this process reappear, amplified in degree 
but not greatly changed in kind, in the 
longer-term memory processes. 

Short-Term Memory and Aggressive 
Search 

The short-term memory of tabu search 
constitutes a form of aggressive exploration 
that seeks to make the best (highest evalu- 
ation) move possible, subject to requiring 
available choices to satisfy certain con- 
straints (Figure 1). These constraints, em- 
bodied in the tabu restrictions, are de- 
signed to prevent the reversal, or some- 
times repetition, of certain moves-by 

rendering selected attributes of these 
moves forbidden (tabu). The primary goal 
of the tabu restrictions is to permit the 

method to go beyond points of local opti- 
mality while still making high quality 
moves at each step. 

Without such restrictions, the method 
could take a "best" move away from a lo- 
cal optimum (in this case, making a non- 
improving move) and then conceivably at 
the next step fall back into the local opti- 
mum by taking the best move available at 
that point. In general, the tabu restrictions 

are intended to prevent such cycling be- 
havior and more broadly to induce the 

search to follow a new trajectory if cycling 
in a narrower sense occurs (that is, revisit- 
ing some earlier solution). These restric- 
tions do not operate in an isolated manner 

but are counterbalanced by the application 
of aspiration criteria. 

Determining the Best Candidate 
A critical step, which embodies the ag- 

gressive orientation of short-term memory, 
is choosing the best admissible candidate 
(Figure 2). First, each of the moves of the 
candidate list is evaluated in turn. (The is- 
sues of creating and updating candidate 
lists, which are particularly relevant for 

layer problems, are discussed in Glover 

[1989a].) In many settings, the evaluation 
of a move can be based initially on the 
change produced in the objective function 

value (that is, the difference between the 
objective function values for the solutions 

~ - - . . . . . . . . . .- 

The core of tabu search is 
embedded in its short-term 
memory process. 

~ . . . ... ..... -- 

before and after applying the move). In 

other cases, where the ramifications of the 
move are less easily determined or where 
not all variables are currently assigned val- 

ues, the evaluation may be based on gen- 
erating relaxed or approximate solutions or 

may simply utilize local measures of attrac- 
tiveness (as in local decision rules for job- 
shop scheduling). However, as the search 
progresses, the form of the evaluation em- 

ployed by tabu search becomes more 
adaptive, incorporating reference to 
intensification and diversification concerns. 
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Begin with A Starting Current Solution 

Obtain the solution from initialization or from 
an intermediate or long-term memory component 

I Create a Candidate List of Moves I 

I Choose the Best Admissible Candidate 

(If applied, each move would generate 
a new solution from the current solution) 

(Admissibility is based on the tabu restrictions and 
aspiration criteria.) Designate the solution obtained 
as the new current solution. Record it as the new 
Best Solution if it improves on the previous best. 

f------ 

I Stopping Criterion I 
Stop if a specified number of iterations 
has elapsed in total or since the last 

Best Solution was found 

Terminate Globally or Wansfer 

A transfer initiates an intensification 
or diversification phase embodied in 

an intermediate or long-term 
memory component. 

Update Admissibility 
Conditions 

Update Tabu Restrictions 
and Aspiration Criteria 

Figure 1: Tabu search short-term memory component. 

Because the number of moves classified 
tabu will generally be small relative to the 

number available, and assuming the ex- 
pense of evaluating a move is not great, it 
is usually preferable to check first whether 
a given move has a higher evaluation than 
its admissible predecessors before checking 
for tabu status. Checking tabu status is the 

first step in screening for admissibility. If 
the move is not tabu, it is immediately ac- 
cepted as admissible; otherwise, the aspira- 

tion criteria are given an opportunity to 
override the tabu status, providng the 
move a second chance to qualify as 
admissible. 

Examining the next move can be 
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Examine another 

found admissible so far 
(from the current candidate list)? 

Evaluate Each Candidate Move 
move (enlarging 
list if appropriate) 

1 EEnt i a l  acceptance) 

Check Tabu Status 

Does the move yield a higher 
evaluation than any other move 

I b the candidate tabu? 1 

Tabu 

I I Check Aspiration Level / YES I Move is Admissible I 

Y= J (Admissibility 
recorded) 

Does move satisfy 
aspiration criteria? 

I YES 

I Candidate List Check I 

\ / 

b 

Is there a "good probability" 
of better moves left, or should 

candidate list be extended? 

Designate as best 
admissible candidate 

Make the Chosen Best Admissible Move 

Figure 2: Selecting the best admissible candidate. 

embedded in a candidate list strategy. In 

some cases, if the tabu restrictions and as- 
piration criteria are sufficiently limiting, 
none of the available moves will qualify as 
admissible. A "least inadmissible" move is 
saved to handle such a possibility and is 
chosen if no admissible alternatives 
emerge. 
A Simple Illustration of Tabu Search 

Consider a minimum cost spanning tree 

problem that includes constraints that 

prohibit certain edges from appearing in 
the tree together, or that allow some edges 
to appear only if certain other edges also 
appear. (Without these constraints, the 
problem could be solved by a straightfor- 
ward greedy algorithm-for example, iter- 
atively adding the least cost edge that 
doesn't create a cycle with previous edges 
until a complete spanning tree results.) 
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Figure 3: Illustrated solution: minimum-cost trees. The choice rule is select the least-cost ad- 
missible "edge swap." The tabu restriction is forbid dropping one of the two most recently 
added edges (these edges are designated tabu). The aspiration criterion is override the tabu re- 
striction if the swap produces a new "current best solution." (Constraints: X, + X2 + X6 < 1, XI 
< X,. Violation penalty = 50.) 

Iteration 1 

/ 
/ 

Cost: 16 +I00 (Constraint Penalty) 
(Current Best Solution-Infeasible) 

iteration 3 

Cost: 32 
(Aspiration overrides tabu status) 

The example problem is based on a in Figure 3, corresponding to four 
graph that consists of five nodes, hence successive iterations of tabu search. Edges 

whose (spanning) trees consist of four of the current tree are shown by solid 

edges. Four diagrams of the graph appear lines, and remaining edges are shown by 
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Iteration 2 

/ 

Cost: 28 
(New Current Best, Local Optimum) 

Iteration 4 

/'&\ 

p' / 

/ /  XI 
I E 

\\+p 
\ 

x2 
x3 \ \  

\ 

/ 

\ 
\ 

Cost: 23 
(New Curlent Best Solution) 
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dotted lines. The costs of the edges are in- 

dicated in the attached boxes and the 

"names" of the edges (xl, x2, . . .) appear 
immediately opposite. The edge names 
have an auxiliary role as zero-one vari- 
ables, where each xl, j = 1, . . . , 7, is de- 

fined by 

1 if edge xl is in the tree 

0 if edge xl is not in the tree. 

By this device, the constraints on the tree 
edges can be expressed in a simple form: 

X1 I Xg. 

The first constraint says that at most one of 
the three edges r l ,  x2 and x6 is permitted to 
be in the tree, while the second constraint 
says that the edge s1 is allowed in the tree 
only if edge x3 is also in the tree. 

To permit the evaluation of trees in 
which these constraints are violated, we 
have introduced an arbitrarily chosen pen- 

alty cost of 50 for each unit of violation. 
Thus, in the diagram for Iteration 1 in Fig- 
ure 3, the cost of the tree is indicated to 
consist of two parts: 16, which is the sum 

of the edge costs for the tree, and 100, 
which represents a penalty cost of 50 for a 

unit violation of each of the two con- 
straints. (Each constraint is violated by one 
unit because the value of the left side of 

the constraint exceeds the value of the 
right side by 1.) The starting tree of Itera- 
tion 1 is the minimum cost spanning tree 

obtained by disregarding the problem con- 
straints, although any other tree could also 
be used. 

To apply tabu search to the example, we 
have elected to use the standard "edge 

swap" move that consists of adding an 

edge and dropping another edge to 
transform the current tree into a new tree. 

Such a move is charactcrrized by the fact 

that the dropped edge always lies in the 
cycle created by the cdge that is added. 

(For example, on Iteration 1, selecting X* to 
be added would result in dropping either 
xl or x4, while selecting x7 to be added 
would result in dropping X,, x5 or x ~ . )  Fol- 
lowing the usual choice rule of the short- 

term memory component of tabu search, 
the move selected is an adl-nissible move 

with the highest evaluation, that is, an ad- 
missible move that produces a new tree 
with the smallest cost (including reference 
to penalty costs for violating constraints). 

To define a tabu restriction, we have sin- 

gled out the added edge to be the move at- 
tribute to be assigned a tabu status (at the 
moment it is introduced into the tree). This 

in turn imports a tabu classification to 

moves that contain the edge by the restric- 
tion of forbidding a future move to drop 

the edge as long as it remains tabu. In the 
example, we permit only two edges to be 

tabu at any given time, that is, each added 
edge remains tabu for two iterations and 

then is removed from the tabu list (whose 
length = 2), freeing it from its tabu status. 

The aspiration criterion we have selected 
to override tabu status is the simple one 

that allows the current move to include a 
tabu edge if the resulting tree is better than 
the best tree produced so far. 

To trace the operation of tabu search, we 
will discuss each of the Figure 3 iterations 
in turn. 

Iteratior1 2: Among the current alterna- 
tives for adding and dropping edges to cre- 

ate a new tree, the move that yields the 
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best cost change is to add x, and drop XI. 

This eliminates the violations of both of 

the constraints on allowable edges, reduc- 
ing the penalty term from 100 to 0 while 
increasing the remaining component of 

cost from 16 to 28 (adding 18-6, the differ- 
ence in the costs of the added and dropped 

edges). 
ltevation 2: By the chosen rule for identi- 

fying the move attribute to be made tabu, 

the edge x3 added by the move of Iteration 
1 acquires a tabu status, thereby in turn 
imparting a tabu status to moves that drop 

this edge. Among the moves remaining, 
the best cost change is created by adding 
edge x7 and dropping edge x6. (The cur- 
rently admissible moves that appear to 
produce a better cost tree also result in vio- 
lating a constraint, incurring a penalty that 

gives them an inferior evaluation.) This 
move is also more attractive than the tabu 
moves in the present case, illustrating that 

the tabu restrictions do not always affect 
the preferred choice. The selected move 
also worsens the cost of the tree, however, 
indicating that the current tree is a local 
optimum, since no available move leads to 

a better solution. (In some implementa- 
tions, tabu lists are not activated until a 
first local optimum has been reached.) 

Iteration 3: Edge x7, added to the tree by 
the move of Iteration 2, joins x3 in becom- 
ing tabu. At this point, a newT situation 

emerges. The best of the available moves is 
to add edge x-, and drop edge x3, a move 
that normally would be disallowed since x, 
is tabu. However, the move satisfies the 
aspiration criterion by producing a tree 
with a better cost than obtained so far, and 
consequently the move is selected as 
indicated. 
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Iterntio~r 4: Edge x-, joins edge x, to con- 
stitute the two most recently added edges 
and hence is designated tabu. (If x3 had 
not been removed from the tree on the 
preceding move, this edge would still have 
been released from its tabu status since the 

tabu list consists of only two elements in 

this illustration.) The current tree is a new 
local optimum and also is the new current 

best. 
The move with the highest evaluation is 

now to add x3 and drop x,, but this move 
is tabu (since edge x-, is tabu) and fails to 
satisfy the aspiration criterion. (In fact, if 
chosen, this move would reverse the move 
most recently made and return to the tree 
of Iteration 3.) The move that adds x3 and 
drops x5 is the best move that also qualifies 

as admissible and is the one selected. On 
the next iteration, not shown, the two tabu 
edges would consist of x2 and x,, and the 

method would continue in this fashion un- 
til a desired iteration cutoff was reached. 

In the preceding example, the tree ob- 
tained at Iteration 4 in fact constitutes a 
global optimum. Without a supplementary 

process for generating bounds or conduct- 
ing some other type of verification, how- 

ever, this outcome would not be known. 
From a practical standpoint, the absence of 
a theoretical guarantee of finding (and ver- 
ifying) optimal solutions usually does not 

constitute a limitation for combinatorial 
optimization problems, since such guaran- 
tees are based on the unrealistic assump- 
tion that exponentially large amounts of 
computational effort are permissible. On 
the other hand, tabu search can also be in- 
tegrated with methods containing optimal- 
ity guarantees to improve their perfor- 
mance, providing an avenue of research 



TABU SEARCH 

that merits further investigation. (An effec- 

tive integration of tabu search with branch 

and bound has been carried out by Friden, 

Hertz, and de Werra [1989b], and the in- 
troduction of cutting planes----including 

pseudo cuts that can be discarded with the 

expiration of associated tabu tenures--con- 

stitutes an associated area that warrants 

exploration.) 
Related Considerations and 
Preliminary Guidelines 

The preceding example leads directly to 

considerations for creating additional types 

of tabu restrictions and aspiration criteria. 

Instead of a tabu restriction preventing 
added edges from being dropped, for ex- 

ample, it would be equally possible to pre- 

vent dropped edges from being added or 

to prevent both types of reversals simulta- 

neously. It is worthwhile to consider the 

conditions under which different 
alternatives may be preferable. 

In applications involving drop-add 

moves, the number of elernents available 

to be dropped from a solution (represented 
by edges of a tree, elements of a set, or 

variables of a basis, and so forth) are typi- 
cally somewhat fewer than the number 

available to be added. When this occurs, a 
tabu restriction that prevents previc)usly 

dropped elements from being added back 

to a solution allows a greater degree of 

flexibility than a restriction preventing 
added elements from being dropped. Ex- 
perimental evidence indicates this type of 
flexibility is generally desirable, leading to 
our first guideline. 

Guideline 1: When tabu restrictions are 
based on a single type of move attribute, it 
is generally preferable to select an attribute 
whose tabu status less rigidly restricts the 
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choice of available moves. 'This guideline 

deserves to be qualified under certain 

circumstances. It appears preferable to 

avoid (or supplement) a tabu restriction 
whose degree of flexibility encourages the 

generation of consecutive solutions that are 

all accessible to a common earlier solution. 
For example, in a job sequencing applica- 

tion, a restriction preventing a job from re- 

turning to a previous position may still al- 

low the job to move to other positions 

reachable from the initial position. The 

phenomenon of repeatedly shuffling 

among these neighboring alternatives grn- 

erally constitutes an inefficient search pro- 

cess and hence should be countered by an 
additional tabu restriction (enforced for a 

smaller number of iterations) requiring the 

job not to move away from a position just 

reached. (The removal of such a restriction 

can be made conditional on repositioning 

another job that creates a new alternative 

for the given job.) A similar phenomenon 

is possible when restricting attention to a 

single type of move attribute from the class 

of drop-add moves; we will provide a 
guideline for handling this issue. 

An important feature of tabu search is 

the ability to locate a robust range of tabu 

list sizes by preliminary empirical testing 

for a given class of problems that give the 

best results for any particular attribute and 

associated tabu restriction. As a result it is 
easy to verify experimentally the type of 
attributes and tabu restrictions that 
perform most effectively. 

In several of the early applications of 
tabu search, the best tabu list sizes consis- 

tently fell in the interval from five to 12, 
with seven representing a highly effective 
value. This outcome has encouraged some 

83 

Copyright O 2001 All Rights Reserved 



GLOVER 

speculation about connections between 

preferred tabu list sizes and the number of 
items normally retained in human short- 
term memory. An interesting supposition, 

for example, is that evolution may have 
discovered that a short-term memory in 

the neighborhood of seven elements is ef- 

fective for problem solving. (It may be 

preferable in some systems, for example, 
those biologically derived, to forego a more 

extensive short-term memory and instead 

devote more machinery to abstraction pro- 

cesses such as "chunkingU-analogous to 

identifying relevant move attributes in 

tabu search.) More recently, experimenta- 
tion has uncovered applications where pre- 

ferred tabu list sizes lie in intervals related 

to problem dimension instead of being 

linked to the magic number seven. As a 
general principle, tabu restrictions that are 

more stringent, as measured by the degree 
to which they limit the range of admissible 

moves, lead to somewhat smaller values 

for best tabu list sizes than restrictions that 

are less stringent. (Human beings no doubt 

select types of attributes for creating ab- 

stractions that are inherently balanced 

with the size of short-term memory to en- 

able effective problem solving. Since peo- 

ple selected the attributes for defining the 
first tabu restrictions based on their intu- 
ition about elements that shollld be in- 
cluded, it is probably not surprising that 

the associated tabu list sizes took the 
values they did.) 

Such speculations aside, the tabu search 
processes illustrated are susceptible to 
elaborations. Prominent among these is the 
use of multiple tabu lists, each devoted to 
a particular type of attribute. 

Guidelitle 2: Incorporate separate but 

parallel lists for different attribcte types, 
where the sizes of these lists reflect the 

relative differences in constraining the 

number of available moves by the tabu re- 
strictions associated with these attribute 

types. 
This guideline is particularly relevant to 

moves whose attribute types are differen- 

tiated by dropping and adding elements to 

sets but also has application to the use of 

dependent attributes, such as values of the 
objective function or of selected partial 

sums of variables. Dependent attributes 

can be created strategically by functions 
designed for this purpose, analogous to the 

use of hashing functions to avoid duplicate 

references in data base searches, as sug- 

gested by Hansen and Jaumard [1987]. An 

exploration by Woodruff and Spearman 

[I9901 discloses the potential merit of this 

approach, but also suggests, in common 

with the current guidelines, that the form 

of dependent attributes relevant to search- 
ing solution spaces involves considerations 

beyond those encountered by customary 
applications of hashing. 

To date, multiple tabu lists have been 

used primarily to maintain separate lists 

for different solution processes or to pre- 

vent repetitions as well as reversals. 
Hence, Guideline 2 invites future explora- 

tion. When different types of attributes are 
handled in this fashion, they can be given 

varying weights, depending on their classi- 
fication and age, to determine the tabu sta- 
tus of moves that contain them. The recent 
development of dynamic tabu list pro- 
cesses [Glover 19901 examines such alter- 
natives within a more formal context. 
Aspiration Criteria 

The minimum cost tree illustration dis- 
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cussed earlier treats o111y the most primi- 

tive form of aspiration criteria, and other 

possibilities warrant consideration. In 

general, each selected attribute of a move 

(such as the added and dropped edges of 
the example) can have one or more aspira- 

tion criteria of its own, based on the best 
solution that iricludes (or excludes) that at- 

tribute as a member. I..ike tabu restrictions, 

aspiration criteria can be given "tenures," 

that is, made time dependent. 
In this type of approach, an aspiration 

criterion can be applied to a tabu attribute 

during the period that it remains tabu, 
overriding its tabu status if a solution is 

obtained that improves on the one ilnme- 
diately before creating this status (to avoid 

returning to this previous solution). Such 
aspiration criteria can have subtle conse- 

quences and ideally should be updated by 

special rules. 

Intermediate and long-term 
memory operate primarily as a 
basis of strategies for 
intensifying and diversifying 
the search. 

-- . - - 

The relevant concerns can be illustrated 

by a simple example. Consider a minimum 

cost zero-.one integer programming problem 
where moves consist of changing the values 
of variables from 0 to 1 or from 1 to 0. 

Suppose the variable xl is changed from 0 
to 1, starting from a solution with a cost of 
100, and the11 in turn x2 is changed from 0 
to 1, now starting from a solution with a 
cost of 120. ('The aspiration criteria for these 
two moves thus will permit thein to be re- 
versed only by producing costs better than 

100 and 120, respectively.) Subsequently, if 
x, is changed from 1 back to 0 (for example, 

by satisfying its aspiration criterion), the ef- 

fect as far as the move for x2 is concerned is 
the same as if the move changing XI from 0 

to 1 had never occurred. Specifically, it may 
now be possible to c h a ~ ~ g e  x, from 1 back 

to 0, yielding a cost of 100 (permitted by 

the aspiration cost of 120), with the yoten- 
tial result of duplicating the solution that 

inaugurated the move for x l .  In short, the 

reversal of the move for xl implies the aspi- 

ration criterion for x, should be changed 

from 120 to 100, and associated adjust- 
ments should be made for aspiration values 

of moves that followed the move for x,. 
(These adjustments may be based on an ap- 

proximating rule such as decreasing all such 
aspiration values by 20, or by amouxits that 

diminish from 20 to 0, since the aspiration 

value for the most recent move is guaran- 

teed to be accurate.) 
A simple use of such aspiration criteria 

that involves no updating (other than to 
initiate and terminate aspiration levels at 

the start and end of their tenures) has 

proved effective in application to the trav- 
eling salesman problem [Knox and Glover 

19891. Together with the use of multiple 

tabu lists irlcorporating different attributes, 

this provides an area open to fruitful in- 

vestigation and leads to the next guideline. 

Guideline 3: Embody the treatment of as- 

piration criteria in an attribute-based 
framework analogous to that used to de- 
fine tabu restrictions (employing the same 
or different attribute types). 
Intermediate and Tmng-Term Memory: 
Iniensification and Iliversification 
Trade-offs 

In many applications, the short-term 
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memory component by itself has produced 
solutions superior to those found by alter- 

native procedures, and the use of longer- 
term memory in these cases has been by- 

passed. However, longer-term memory can 

be important for obtaining best results for 

hard problems [Malek, Guruswamy, 

Owens, and Pandya 1989; Skorin-Kapov 
19891. The modular form of the process 

makes it easy to create and test the 
short-term memory component first and 

then to incorporate the remaining compo- 

nents if additional refinement is desired. 

Intermediate and long-term memory op- 
erate primarily as a basis of strategies for 

intensifying and diversifying the search. In 

fact, the fundamental elements of intensifi- 

cation and diversification strategies are al- 

ready present in the short-term memory 

component of tabu search, since a short- 

tern1 memory tabu list has an intensifica- 

tion role by temporarily locking in certain 

locally attractive attributes (those belong- 

ing to moves recently evaluated to be 
good), while it also has a diversification 

role by compelling new choices to intro- 

duce (or exclude) attributes that are not 

among those recently discarded (or 

incorporated). 
The fact that different attributes, such as 

add and drop attributes, can create differ- 
ent types of intensification and diversifica- 
tion effects provides a further argument for 

creating parallel tabu lists (of different 
sizes) for handling such attributes---that is, 
their associated tabu restrictions-in 
concert. 
An Example of Longer-Term Concerns 

We will discuss an example that dis- 
closes the relevance of longer-term mem- 
ory, emphasizing its role in creating a di- 

INTERFACES 20:4 

versification strategy. Once again we refer 
to a minimum cost tree problem attended 
by additional constraints. We assume that 

the tabu restrictions, tabu list size, and as- 

piration criteria are the same as in the 

earlier example. 
The beginning solution of Figure 4 is ob- 

tained by solving a minimum cost span- 

ning tree problem without reference to the 
two added constraints, x9 x7 and x3 + x7 
5 2x,. The second constraint (which effec- 

tively stipulates that edges x, and x7 cannot 

be in the tree unless edge x5 also is in the 
tree) is violated by two units, hence incurs 

a penalty cost of 100. As moves are made 
leading away from this initial solution, it is 

more attractive to drop edges x3 and x7 

than to introduce the high cost edge x5. 
Also, once a feasible solution is obtained, 

from which x5 is excluded, edge x5 remains 

unattractive as a candidate to be intro- 

duced. The limitation we have accepted for 

tabu list size is insufficient, moreover, to 
cause a move that adds x5 to rise to the top 
of the nontabu alternatives. (A larger list 

size in general would not remedy this type 

of situation, because it can render other 

good moves harder to find. Also, at some 
point, such a larger list no longer qualifies 

as a form of short-term memory.) 
Thus, the tabu search procedure that re- 

lies only on the short-term memory com- 
ponent fails to discover the right move to 
reach the optimal solution-that is, it fails 
to induce sufficient diversification to drive 
the process into an appropriate new re- 
gion. For a problem of this simplicity, there 
are a variety of ways to escape from the 
trap that prevents access to the optimal so- 
lution (for example, employing a move 
evaluator based on Lagrangian considera- 
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x12 

Initial Solution: Cost =I15 +I00 (Penalty) 

Optimal Solution: Cost =I29 

Figure 4: Relevance of longer-term memory and diversification minimum-cost tree problem. 
Added constraints are X, < X,, X, t X7 < 2Xs. (Unit violation penalty = 50.) 

tions, or incorporating slightly more sponse in this type of situation is to turn to 
complex types of moves). However, the randomization as an attempt to uncover an 
principle illustrated by the example re- effective move by the operation of good 
mains applicable in settings where easy fortune. Such an approach is certainly pos- 
remedies are unavailable. sible, but it is also a more haphazard 

In the present climate of problem- means of achieving diversity than an ap- 
solving methodologies, an instinctive re- proach based on strategic use of memory. 
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Moreover, randomization loses the coun- 

terbalancing effect of continuing to pursue 
good moves, following more than blind se- 

lection, in addition to incorporating a di- 
versification objective. (A partial compro- 

mise is embodied in the probabilistic vari- 

ant of tabu search, which generates 

probabilities for selecting nioves and, like 

the deterministic form, establishes priori- 

ties based both on move evaluations and 
the tabu search memory structures. Faigle 

and Kern [I9891 show that determining 
probabilities in this way has a mathemati- 

cal as well as intuitive justification.) 
Links to a Learning Process 

An intermediate term memory procedure 

incorporates features of both intensification 

and diversification results by establishing a 
historical standard for differentiating the 

quality of alternative moves. A particular 

evaluator, such as one based on the 
change in objective function values, can 

vary in its accuracy of identifying good 

moves, depending on the current solution 

(or search state). This point has been 
brought home dramatically by the learning 

approach called target analysis [Glover and 

Greenberg 19891, which offers a useful 

means for developing evaluators to sup- 
port the intensification and diversification 
strategies of tabu search. 

The basis of the target analysis approach 

is to invest extensive preliminary effort to 
determine optimal or near optimal solu- 
tions, called target solutions, to representa- 
tive problems from a given class. (Such ef- 
fort is allowed to be considerably greater 
than would be employed on a routine so- 
lution attempt.) Subsequently, during a se- 
quence of follow-up phases, these prob- 
lems are re-solved using the target solu- 

tions to evaluate the evaluators. This is 

done by creating scores that rate the moves 

by their ability to lead to the target solu- 
tions, basing these scores on the change 

produced by the moves in the discrepancy 
between the current solutions and the tar- 

get solutions. These scores then disclose 

when different potential evaluators suc- 

ceed or fail in identifying good moves and 

lead to identifying information that can be 

used to create improved evaluators. 
In a study applying target analysis to a 

tabu search method for machine schedul- 
ing Glover and Laguna [I9891 found that 

the standard objective function evaluator 
worked well in identifying the quality of 

moves on iterations where moves existed 

that improved the current solution, but 

performed poorly when such moves were 
absent. This knowledge was used to create 

an intensification strategy that maintained 

history of good move attributes, character- 

ized by their membership in the best solu- 
tions found in the past. These attributes 
(expressed in this case as relative positions 

of tasks scheduled on a machine) then be- 
came the basis for creating an alternative 

proxy target evaluator, which supple- 

mented the standard evaluator when all 
admissible moves were nonimproving. The 

result was to obtain best known solutions 
more quickly for smaller problems and to 

obtain new solutions of higher average 
quality for larger problems. 

By extension, such an approach can be 
elaborated to incorporate elements of di- 
versification as well as intensification, with 
an ability to shift the emphasis between 
the two. This can be accomplished by as- 
signing high ratings to attributes contained 
in moves that received good evaluations 
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under conditions where such evaluations 

were reliable, as determined by target 

analysis. (Such ratings include a consis- 

tency factor, according to how often partic- 
ular attributes belong to high evaluation 

moves.) Since not all high evaluation 

moves that qualify as reliable are selected 

during the solution process, some of their 
associated attributes do not become (or 
rarely become) incorporated into the solu- 
tions generated. Accordingly, this leads to 

the following guideline. 
Guidelir~e 4: To combine the diversifica- 

tion and intensification goals, create a rat- 

ing system by reference to target analysis, 
maintaining records of highly rated attri- 

butes and of how often these attributes ap- 

pear in solutions generated. On iterations 

where conditions derived from target anal- 
ysis disclose standard evaluations to be less 

reliable, supplement these evaluations by 
favoring attributes with high historical rat- 

ings that have less frequently occurred in 
previous solutions. 

In applying the preceding guideline, the 

relative stress on attribute ratings versus 
the frequency of being incorporated into 

solutions (by belonging to moves actually 
selected) provides a means for exploring a 

range of intensification/diversification 

trade-offs. 

One of the possible ways of implement- 
ing Guideline 4 may be illustrated as fol- 

lows: move attributes may be divided into 
six frequency classes according to whether 
these attributes (1) often occur in good (or 

very good) solutions; (2) often occur in 
poor solutions but rarely in good solutions; 
(3) often occur in moves to add the attri- 
bute to the current solution, where these 
moves receive evaluations that are high, 

but not high enough to be chosen; (4) of- 

ten occur in moves to drop the attribute 

from the current solution, where these 

moves similarly receive evaluations insuffi- 
ciently attractive to be chosen; (5) often oc- 

cur in the solutions actually generated dur- 

ing the search process (whether good or 

bad); (6) often do not occur in solutions 
generated. 

Class (1) and (2) attributes can be used 
to support intensification goals by selecting 

moves to add and drop such attributes, re- 

spectively, from solution. Class (3) and (4) 
attributes combine the elements of intensi- 

fication and diversification by these same 

respective strategies. Finally, in reverse, 

moves that drop class (5) attributes and 

add class (6) attributes serve to emphasize 

diversification concerns. Target analysis 
may be used to define the thresholds im- 
plied by terms such as often and good, in- 

stead of resorting to arbitrary choices or 

calibration efforts based on trial and error. 
Other types of classifications are of course 

possible, including those that involve con- 

ditional relationships. The use of attribute- 

based memory in tabu search leads nalu- 
rally to the parallel concept of attribute- 

based evaluations, as embodied in the 
foregoing longer-term memory strategies. 

Diversification Based on Move Distance 
A diversification strategy is particularly 

relevant in situations where the best solu- 
tions can be reached only by crossing cer- 
tain humps, involving the choice of moves 
with inferior evaluations. To identify ap- 

propriate moves to negotiate such humps, 
a memory function can be created to clas- 
sify the relative attractiveness of moves 
within a given distance class. 

The notion of move distance derives 
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from the fact that some moves create 
greater changes in the current solution 

than others. For example, in a scheduling 

application, a move that transfers a task to 

a new sequence location several positions 
away from its current position involves a 
greater move distance than one that trans- 

fers a task to an adjacent location. (Such a 

distance measure may be based on ele- 

ments other than position, for example, the 

sum of processing times of intervening 

tasks or the effect on secondary elements 
whose relationship may be altered by the 

repositioning.) Similarly, in an integer pro- 

gramming context, the degree to which a 

move changes the relative feasibility (or in- 
feasibility) of certain constraints or alters 
the value of certain dependent variables 

can be made the basis for defining a 

distance measure. 
Such a measure derives its significance 

from the following anticipated correlation: 

moves that involve greater distances are 

likely to entail greater cost, as determined 

by a standard evaluator, than moves that 
cover smaller distances. This implies that 

large distance moves are likely to appear 
relatively unattractive by such evaluators 

and hence also are likely to be among the 

moves rarely chosen, which may be neces- 

sary to cross humps to better solutions. Ac- 
cordingly, historical information can be 
used to determine when an evaluation for 
a large distance (or intermediate distance) 
move is in fact attractive for members of 
its distance class, regardless of how the 
evaluation compares to the evaluation of 
smaller distance moves. Selecting preferred 
moves from infrequently sampled classes 
therefore provides a useful form of 
diversification. 

INTERFACES 20:4 

Moves that induce greater solution 

changes should characteristically be 
applied when standard evaluators lose 

their effectiveness (in the simplest case, 

where they fail to offer direct improve- 
ment). Moves of lesser impact may accord- 
ingly be assigned the function of locally 

tuning solutions generated by larger dis- 
tance moves. 

Target analysis again provides a means 

for refining such a strategy, leading to a 
determination of such issues as (1) how far 

above the historical class average (or how 

close to the historical class best) a particu- 

lar evaluation should be to qualify as pre- 
ferred; (2) when the evaluation of a larger 
distance move should be considered supe- 

rior to the evaluation of a smaller distance 

move; (3) what length of time a tabu con- 
dition should operate to prevent moves in 

different distance classes from being re- 

versed. More precisely, parameters such as 
highest, average, and lowest evaluations 

for moves of a given class can be gener- 
ated at each iteration and then accumu- 

lated over an interval of test iterations to 

identify extreme and central values for 
each (and for such associated quantities as 

spreads between these parameters). This 

information can be exploited by using 
scores derived from target analysis to es- 

tablish relationships between the single it- 

eration parameters and the historical statis- 
tics to identify which moves should qualify 
as good. This approach may be expressed 
as follows: 

Guideline 5: Devote a limited number of 
preliminary iterations to identify historical 
statistics for move evaluations in each dis- 
tance class, and apply relationships from 
target analysis to obtain effective choices at 
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subsequent iterations (by comparing the 

values of associated single iteration 

parameters to these statistics). 

This guideline can be applied to generate 

tabu sizes, or inore broadly tabu measures, 
that can vary from iteration to iteration. A 
relevant variation of the distance concept 
in such an application is to consider moves 

that not only influence the current solu- 
tion, but that provide gateways to other 

moves, that is, whose selection opens up 
alternatives not frequently accessible 
during the previous course of search. 

These notions can have useful implica- 
tions for parallel processing. Specifically, 

larger distance moves often will be more 

difficult to evaluate accurately than smaller 

distance moves, precisely because they en- 
gender or create the opportunity for 

greater change. However, it may be possi- 
ble to identify a small set of preferred large 
distance moves, at least one of which will 

be good (in a sense established by target 
analysis), without precisely knowing which 

move should qualify as the good one. Ap- 

plying parallel processing to examine the 

consequences of these preferred alterna- 
tives provides a more refined basis for se- 

lecting among them. Such an approach is 
exemplified in a geometric application in 
the multi-leveling procedure of Ron [1988]. 
In cases where it may be hard to return to 

states once accessible by alternate moves 
not taken, such a use of parallel processing 
can prove particularly beneficial. (Glover 
[I 9901 discusses memory and guidance 
structures to facilitate the use of return 

strategies, where these are appropriate, in 
the context of move restructuring.) 
Diversification and Restarting 

One form of diversification strictly in- 

volves longer term memory considerations. 

A common means of attempting to im- 

prove the performance of heuristic 

methods is to restart the solution process 
from different solutions generated ran- 

domly or by a set of favored starting heu- 
ristics. The generation of new starting solu- 

tions is a key area to be explored by a 
more systematic diversification strategy 
based on a long-term memory component. 

A straightforward approach has been 
found highly effective in application to the 
traveling salesman problem [Malek, 

Guruswamy, Owens, and Pandya 19891 

and the quadratic assignment problem 

[Skorin-Kapov 19891. The basis of this ap- 
proach is a frequency-derived strategy sim- 

ilar to that suggested in Guideline 4 for in- 
termediate term intensification and diversi- 

fication, but which focuses more 

specifically on producing initial solutions 
as different as possible from the solutions 
generated throughout the previous history 

of the search process [Glover 1986, 19891. 

To do this, a count is maintained for each 

solution element or assignment (the assign- 

ment of a job to a position, or of a value to 
a variable, and so forth) identifying the 

number of times this element or assign- 
ment occurs over all solutions previously 

encountered. When a new starting solution 
is generated, the frequency counts are used 

to penalize the selection of their associated 
elements, thus favoring moves that intro- 
duce elements excluded from (or less fre- 
quently incorporated in) earlier solutions. 

Such a strategy may also be activated 
without restarting, driving the search away 
from its present vicinity for a specific dis- 
tance or a selected number o f  iterations. 
These observations may be sumlnarized as 
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follows: 

Guideline 6: For longer-term diversifica- 
tion, employ frequency-derived penalties 

to drive the search away from solutions 

previously encountered either by restarting 
or by progressing from the current 
solution. 

Applications to date, which have cen- 
tered on the restarting aspect of the pre- 

ceding guideline, have utilized only a sin- 
gle restart, disclosing that even a limited 

form of the approach can be effective. It 
will be challenging to use the lessons 

learned from such applications to generate 

diverse starting points for parallel process- 

ing, with successive communication be- 
tween parallel streams to capture appropri- 

ate intensification/diversification 
trade-offs. 

There are special contexts, as in certain 

types of scheduling or loading problems, 
where the search process should preferably 

consist of successive waves of construction 

from alternative levels or stages (including 

the stage that entails reconstructing the en- 

tire solution) and where tabu restrictions 
should appropriately focus on preventing 

repetitions rather than reversals. Such set- 
tings lead to interdependent tabu lists that 

are similarly staged [Glover 19901 (gener- 
ally based on attributes expressing sequen- 
tial dependence), providing a search pro- 
cess that is particularly suited to the appli- 

cation of candidate list strategies [Glover 
19891. Frequency-derived penalties like- 
wise can be applied to these settings in or- 
der to influence diversification on wider 
time scales. 

Finally, an associated area for examina- 
tion consists of integrating the frequency- 
derived penalties (which induce a form of 

INTERFACES 20:4 

tabu status) with the recency-derived pen- 

alties that result by amplifying the influ- 

ence of a tabu perturbation function. The 
integration of both recency- and 

frequency-derived factors in human long- 
term memory suggests that determining an 
effective combination of the two may 

prove better than either in isolation. The 
preferential treatment of higher evaluation 

elements in memory (by incorporating in- 
tensification concerns) also provides a 

quality-derived dimension to memory, au- 

tomatically supplementing the dimensions 

based on recency and frequency. 
Conclusion 

The rapidly growing and highly effective 
applications of tabu search suggest the 

useful potential of this approach and its 
underlying principles. At the same time, it 

is apparent that the studies to date have 
only taken the first steps in exploring this 

potential. Many more applications remain 

to be undertaken, and many new possibili- 

ties for refining the basic processes of the 

method remain to be tested. 
At the most basic levels, the ability to 

launch simple implementations of tabu 

search with relatively small effort and to 
build on these as desired makes the ap- 
proach convenient for carrying out prelimi- 
nary investigations. As additional refine- 

ments are undertaken, the use of learning 
procedures, such as target analysis, provide 
an opportunity to more fully exploit the 
two key polarities within tabu search-em- 
bodied in the interplay between tabu re- 
strictions and aspiration criteria, and be- 
tween intensification and diversification 
strategies. 'These efforts should lead to in- 
creasingly effective variations and should 
open up new areas of research and 
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implementation. 
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