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This paper examines some of the characteristics of Al-based heuristic procedures that have
emerged as frameworks for solving difficult optimization problems. Consideration of attributes
shared to some degree by human prohlem solvers leads to focusing in greater detail on one of the
more -ituccessful procedures, tabu search, which employs a flexible memory system (in contrast
to 'memoryless^ systems, as in simulated annealing and genetic algorithms, and rigid memory
systems as in branch and bound and A* search). Specific attention is given to the short-term
memory component of tahu search, which has provided solutions superior to the best obtained
by other methods for a variety of problems. Our development emphasizes the principles
underlying the interplay between restricting tbe searcb to avoid unproductive retracing of patbs
(by tneans of tabu conditions) and freeing the search to explore otherwise forbidden avenues (by
aspiration criteria). Finally, we discuss briefly the relevance of a supplementary framework,
called target analysis, which is a method for determining good decision rules to enable heuristics
to perform more effectively.

INTRODUCTION

Heuristic approaches to optitnization problems
abound, and many claim some connection to artifi-
cial intelligence. Generally speaking, good heuristic
procedures arc based on ideas that can trace their
origins equally to the fields of artificial intelligence
and operations research. (This is not too surprising,
since the two fields emerged from common be-
ginnings.) Nevertheless, whether due to differences
of emphasis or to differences in the supply of
'congenial metaphors', recent heuristic innovations
have tended frequently to become aligned with Al.
Hence in order to investigate what is current in
heuristic ideas it is appropriate to examine proced-
ures that have acquired some of the imprint of the
Al domain.

Given the proliferation of heuristic procedures in
this category, there is some challenge to identifying
those that are more significant, or that at least
embody principles that have widespread utility.
Currently, four methods that are perceived as affili-
ated in some measure with the Al field have gained
prominence asframeworks for solving difficult prob-
lems: neural networks, simulated annealing, genetic
algorithms and tabu search.

Neural networks have claimed intriguing suc-
cesses in pattern-recognition applications, but have

generally performed less than impressively in op-
timization settings. They have demonstrated their
primary value for problems whose structures can be
exploited by processes likened to those of 'associ-
ative memory', and appear less well adapted (so far)
to the solution of optimization problems in broader
categories. While these approaches have a great
deal that is inherently fascinating about them, parti-
cularly concerning the directions in which they may
evolve, neural networks api>ear to show greatest
promise in partnership with other methods, and are
coming to rely on one of the other three heuristic
frameworks to improve their effectiveness in a
number of applications.

Simulated annealing and genetic algorithms
draw on analogies to phenomena in the physical
and biological sciences, respectively, and have the
attractive feature of assured convergence under
appropriate assumptions. It should be cautioned,
however, that convergence in these procedures
takes a less than impressive form, couched in prob-
abilistic assertions. In simulated annealing, for ex-
ample, optimality is guaranteed to be achieved with
probability 1 after an infinite number of iterations.
The guarantee offered by genetic algorithms is
likewise probabilistic and refers only to certain
classes of "undominated" solutions. Consequently,
members of the Al and OR communities who are
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less religiously attached to mathematical demon-
stration (e.g. who would like to see convergence
take place in the world we know) may prefer to
place greater stock in the empirical performance of
such approaches than in their theoretical under-
pinnings. Fortunately, a number of instances of
efFective empirical performance have been docu-
mented, attesting to the value of these procedures as
practical tools.

From an Al standpoint, one of the more inter-
esting features of simulated annealing and genetic
algorithms is that they are virtually memoryless.
Each operates by using a form of threshold to allow
randomly sampled moves to alter current solutions.
and to initiate subsequent iterations of search.
Memory has no role except as implicit in the
structure of solutions generated from one stage to
the next as a result of progressively applied screen-
ing criteria.

Mathematically, there is a good reason for this.
At our present level of mathematical development
we are unable to provide theorem-proof demon-
strations for the behavior of systems that embody
memory, except in its most trivial or most rigid
forms. Leading in popularity are the systems with
no memory whatsoever, which simply involve rules
for transforming a present state into a successor,
closely followed in popularity by the 'highly struc-
tured' memory systems exemplified by branch and
bound. A* search, and their relatives.

Beyond the appeal of being susceptible to math-
ematical analysis, memoryless systems have the
attraction of appearing to effectively serve certain
realms of physics and biology (at a stage of evolu-
tion that precedes the development of a complex
brain), while rigid memory systems appeal to no-
tions of orderliness (as manifested in what may be
called a search-by-bookkeeping orientation).

To the extent that Al motivates a notion of
intelligence that involves freer reign with the use of
memory, however, we may conceive it worthwhile
to explore frameworks that embrace more fiexible
memory structures. Mathematics may not yet be
able to justify certain forms of intelligence, but we
may suspect that this should not compel us to
abandon such forms of intelligence in building
solution methods.

This latter view provides the perspective adopted
in this paper—a perspective that also underlies the
development of the fourth heuristic framework,
tabu search. Consequently, the class of approaches
embodied within tabu search will be the chief focus

of the material that follows. In addition, we will
briefly offer a fifth framework for consideration,
called target analysis., which is not a heuristic
solution procedure but a form of leaming approach
designed to determine good variants of such solu-
tion procedures.

TABU SEARCH

Tabu search is a higher-level method, or meta-
strategy, for solving optimization problems. This
technique is designed to be superimposed on any
procedure whose operation can be characterized as
performing a sequence of moves that lead the
procedure from one trial solution (or solution state)
to another. Each move is assumed to be selected
from a set of currently available alternatives, and is
susceptible to being evaluated by one or more
functions that measure its relative attractiveness in
some local sense. When the solution produced by
the move is feasible, for example, the objective
function value itself provides such a measure.

The well-known hill-climbing heuristics fall within
the class of procedures susceptible to being embed-
ded within tabu search. In general, a hill-climbing
heuristic progresses from an initial feasible solution
along a path that changes the objective function
value in a uniformly descending or ascending direc-
tion (for minimization or maximization, respect-
ively) until no further improvement ofthe objective
function is possible by means of the available
moves. At the stopping point, the solution obtained
is a local optimum that, for combinatorial prob-
lems, very rarely is also global (i.e. rarely the best
solution across the entire range of feasible possibil-
ities). In this context, tabu search provides a guiding
framework for exploring the solution space beyond
points where an embedded heuristic would become
trapped at a local optimum.

The most basic form of tabu search consists of
introducing tabu restrictions that classify certain
moves as forbidden, together with aspiration cri-
teria capable of overriding the tabu status of moves
(where appropriate). These activities have a time-
dependent dimension that can be implemented by
means of a short-term memory function. More
elaborate tabu search procedures include inter-
mediate and long-term memory functions to carry
out additional strategic operations.

The success of the method has been noteworthy.
Although, at present, tabu search is not nearly as
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widely studied as simulated annealing and genetic
algorithms—and, correspondingly, more remains
to be learned about the best ways to apply the
method—there are already a number of problem
settings where tabu search has been able to find
solutions superior to the best results previously
obtained by any method. In other cases, tabu search
has been demonstrated to offer advantages in ease
of implementation or in the flexibility to handle
additional considerations (such as constraints of a
form not encompassed by the original problem
formulation).

Applications of tabu search where superior per-
formance and/or greater adaptability have been
reported cover a considerable spectrum, including
employee scheduling (Glover and McMillan, 1986),
machine scheduling (Laguna, 1989; Laguna et al,
1989), maximum satisfiability problems (Hansen
and Jaumard, 1987), space planning and architec-
tural design (Glover *•/ al, 1985), computer channel
balancing (Glover, 1989a), character recognition
(Hertz and de Werra, forthcoming), convoy
scheduling (Bovet, 1987), telecommunications path
assignment (Ryan et al, 1989), quadratic assign-
ment problems (Skorin-Kapov, 1990), nonlinear
covering problems (Glover, 1990), traveling sales-
man problems (Knox, 1989; Maiek et al, 1989a, b),
flow-shop sequencing problems (Windmer and
Hertz, forthcoming), job-shop scheduling prob-
lems (Eck, 1989), graph coloring and partitioning
problems (Hertz and de Werra, 1987; Wendelin,
1988), maximum stable set problems (Friden et al,
1989), and a variety of others (see, e.g., the surveys in
Glover, 1989a, 1990; Hertz and de Werra, forth-
coming).

In the domain of combinatorial problem solving
there is still a long way to go, however, and the goal
remains to do better tomorrow than today. Ack-
nowledging this, the large body of positive results
for a procedure that is just beginning to be studied
suggests the tabu search framework may offer
something of value in a number ofthe areas current-
ly considered challenging. Viewed from the per-
spective of research, the new types of memory
schemes appropriate to tabu search motivate the
development of correspondingly new data struc-
tures and processing methods. Tabu search also
invites new applications for cutting-plane theory
(including the introduction of 'pseudo' cutting
planes, which may be purged with the expiration of
a short-term memory tenure), and new quests for
probability theory in the versions of probabilistic

tabu search. Some ofthe features ofthe method are
elaborated in the following sections.

BASIC ELEMENTS

Tabu search may be viewed as a nested hierarchy of
long-, intermediate- and short-term memory func-
tions, with the short-term function constituting the
core of the procedure. The short-term memory
component of the method operates by selecting
moves designed to progress quickly to a local
optimum (seeking those with the highest evalu-
ations, subject to trade-offs involved in the effort of
identifying such moves), and then to go beyond the
local optimum by forbidding moves with certain
attributes (making them tabu). No concern is given
to the fact that the best moves available may not
improve the current solution. Instead, the method
selects the moves with highest evaluations, from the
set not classified as tabu, to drive the search into
new regions. The process generates a trajectory that
often includes a large portion of high-quality solu-
tions, while periodically obtaining solutions better
than the best found previously during the search.
Each such pass ofthe short-term memory compon-
ent continues until a specified number of iterations
elapses since the best solution was last improved or
until an overall cutoff limit is reached.

The intermediate and long-term memory func-
tions of tabu search co-ordinate successive passes of
the short-term memory component, or successive
intervals of a given pass, to achieve goals that may
be described as local intensification and global
diversification ofthe search (Glover, 1989a, 1990).
These memory functions operate as boosters to
obtain solutions of still higher quality or to permit
solutions of a given quality to be obtained more
efficiently.

Because of the central role of the short-term
memory component, we will focus on its operations
in the remainder of this section. To provide a fuller
understanding of how this component operates, a
diagram ofa single pass of this procedure is given in
Fig. 1, adapted from Glover (1989b).

The word 'solution' as used in this figure admits a
fiexible interpretation. It can represent what is
commonly called a trial solution, or even a partial
solution; i.e. it may not satisfy all constraints or
specify values for all variables. A form of evaluation
criterion is used that permits different solutions (of
whatever tyi>e) to be compared. •- J - :
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Short-Term Memory Component of Tabu Search
Step 1

Begin with some Initial Solution

Designate it tbe Current Best Solution

Step 2

.ffo throuRh a Sample set of Candidate Moves

(If applied, each move would generate a new
solution from the existing solution.}

i
Step 3

Pick another move Evaluate the current move
Does tbis move produce a higher evaluation
tban any other so far found admissible
(from tbe current Sample Set)?

YES

Step

[potential
acceptance)

Step 7

Check Sampling Criteria
Should another move from
Sample Set be examined?
(e.g., is there a "good
probability" of bigber
evaluation moves left)

Cbeck tabu status
Is tbe candidate move
tabu?

Step 6

Tabu

step 5

HO

Hove is admissible
Store as new
current best move

YES Cbeck Aspiration Level
Does move satisfy
aspiration criteria?

NO

Step a Step 9 Step 10

Make tbe chosen best move
Record the resulting so-
lution as tbe new Current
Best Solution if it im-
proves on tbe previous
best.

Stoppina Criterion
Has a specified
number of iterations
elapsed in total or
since the last Cur-
rent Best Solution
was found?

Nn .,

update Tabu Lists and
Aspiration Levels
Establish basis for
new Sample Set.

YES

STOP

Figure 1.

To give substance to the diagram, the functions
performed by each of its steps will be identified. For
concreteness, we describe how the procedure may
be applied to the traveling salesman problem. The
principles can readily be extrapolated to other
contexts.

Step 1. A natural form of a 'solution' in the
traveling salesman setting is a tour, i.e. a cycle that
visits each node exactly once. An initial tour can be
generated in a variety of ways, randomly or other-
wise (allowing artificial edges with high costs where
necessary) as by a simple construction process that
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grows a progressively enlarging chain until the last
edge completes the tour.

Step 2. A Sample Set of candidate moves for the
traveling salesman problem may consist, for ex-
ample, of the standard '2-OPT' moves, or swaps,
which result by dropping any two nonadjacent
edges and adding the unique pair of edges that will
produce a different tour. Where the set of such
moves is large, the Sample Set may be chosen as a
subset, as by subdividing the tour in various ways
and allowing only those swaps that occur within
given components of the subdivision. (An approach
of creating sample sets by such subdivisions has
proved highly effective in applications of tabu
search to machine scheduling problems (Laguna
et ai, 1989).)

Step 3. The evaluation of the current candidate
move can be applied in the case of 2-OPT moves by
comparing the lengths of the two added and two
deleted edges to see if the resulting tour would be
improved. To take the 'YES branch' from this step,
leading to Step 4, the move must have a higher
evaluation than those in the Sample Set so far found
admissible, where 'admissible' is defined as a result
of passing tests in subsequent steps. Until a move
from the Sample Set is found that thus qualifies as
admissible, and therefore provides a basis for com-
parison, all moves take the YES branch from the
evaluation step (to see if they may in fact become
admissible).

Step 4. This step embodies a key issue of the
procedure, which is to establish a basis for deciding
if a move being examined should be classified as
tabu. To create this basis, the most straightforward
application of tabu search maintains a tabu list that
records selected attributes of each move made. For
example, each element of the tabu list for 2-OPT
moves could be a four-component vector whose
first two entries identify the edges added by the
move and whose last two entries identify the edges
deleted.

The tabu list embodies one of the primary short-
term memory functions of the procedure, which it
executes by recording only the t most recent moves,
where / is the parameter that identifies the 'size' of
the list. Considerable success has resulted from
strategies that keep f at a fixed value. However,
recent experimentation (Taillard, 1990) discloses
that better performance results by varying t within a
chosen interval of values, remaining with a given
value for approximately 2t consecutive iterations
before choosing another.

To implement the procedure, an array denoted
tabu-time (e) is created which identifies the (most
recent) iteration when a move 'containing' a speci-
fied attribute e was made. Attributes generally are
defined so that each has a natural complement or
'reverse' attribute, (e.g., the complement of an at-
tribute that corresponds to adding a particular edge
is the attribute that corresponds to dropping that
edge.) Then the repetition of a move containing an
attribute e is avoided, along with other associated
moves, by classifying e tabu (hence forbidding its
inclusion in future moves) as long as tabu-time (e)
lies within t iterations of the current iteration. The
reversal of a move is avoided similarly by classifying
the complement f of e tabu as long as tabu-time (f)
does not exceed the difference 'current iteration
~t\ Avoiding move reversals is frequently a more
effective strategy than avoiding move repetitions,
although in some contexts (Glover, 1989a) it is
appropriate to prevent both reversals and repeti-
tions, according to the type of move employed.

The attributes of moves that are chosen to be
recorded in the elements of the tabu list can be used
in a variety of ways to define tabu status. Such
differences are important and generate search paths
with different characteristics. Generally it seems
worthwhile to create a separate tabu list and tabu
list 'size' t for each attribute class. For example,
added edges and deleted edges can each have their
own lists, and the size of the list for added edges (to
prevent them from being subsequently deleted)
should normally be somewhat smaller than for
deleted edges (to prevent them from being sub-
sequently added back), reffecting the fact that the
number of edges contained in a traveling salesman
tour is generally somewhat smaller than the number
not in the tour. Best ranges for t (as in the approach
that varies t between selected limits) typically lie in a
proper subset of the interval from n/3 to 3n, where n
is related to problem dimension (such as the num-
ber of nodes or edges of a graph, or a square root of
this number). However, in some applications a
simple choice of r in a range centered around 7
seems to be quite effective. In any case, good ranges
are characteristically easy to identify and highly
robust. Dynamic tabu list strategies that employ
"moving gaps" are emerging that may prove even
more successful (Hubscher and Glover, 1990). The
relation between diflerent tabu list structures and
the types of restrictions for classifying moves tabu
(as a function of selected move attributes) is an
important area for research. i i ' »
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One goal of this application of short-term mem-
ory is to avoid a solution path that duplicates a
sequence of solutions, i.e. to avoid cycling (loosely
defined, since sometimes it is preferable to return to
a previous solution to find an improved path lead-
ing away). Because the manner of cycle avoidance
involved in the operation of the tabu list is highly
flexible—much more so than branch and bound, for
example—it does not give an absolute theoretical
assurance that cycling is impossible. Nevertheless,
from an empirical standpoint the tabu list performs
this function highly effectively for appropriate
values of t. (More advanced types of tabu lists,
theoretically motivated, are now emerging (Glover,
1990).)

Step 5. Another key issue of tabu search arises
when the move under consideration has been found
to be tabu. If appropriate aspiration criteria are
satisfied, the move will still be considered admiss-
ible in spite of its tabu classification. Roughly
speaking, these criteria are designed to override
tabu status if a move is 'good enough'. The condi-
tion 'good enough' must be sufficiently limiting to
be compatible with the goal of preventing the
solution process from cycling (in an appropriate
sense).

Based on this motivation, a simple form of an
aspiration-level check is to permit tabu status to be
overridden if the solution produced would be better
than the Current Best Solution. Another approach
is to define an aspiration level AiL) to be the length
of the best tour that has ever been reached by a
move from a tour of length L. Then, if a move
applied to a tour of length L can produce a tour
of length L* better than A{L) (i.e. L*<A{L)),
the solution process cannot duplicate a sequence
followed before.

A method that has proved useful in some appli-
cations is to base the aspiration level on the same
attributes that define tabu status, and to require a
solution better than the one that gave rise to
classifying such attributes tabu (Glover, 1989b;
Maiek et al, 1989a). Another approach is to regard
a tabu move admissible if its evaluation surpasses
that of the best non-tabu move by a specified
margin (which can depend, for example, on age on
the tabu list, frequency of surpassing the best non-
tabu move, etc.).

Steps 6 and 7. Following the aspiration-level
check, either the move under examination is found
admissible and is recorded as the new current best
move at Step 6 or the process proceeds directiy to

Step 7 to check the sampling criteria. The latter step
is a dynamic means of monitoring the definition of
the Sample Set, and hence of choosing the *best
move' from this set at each iteration. Thus, for
example, one form of dynamic sampling strategy is
to stop as soon as a move of a specified level of
attractiveness is found. If, at the extreme, this level is
set to admit any move that creates an improvement
in the current tour, then the result is the same as the
classical heuristic hill-climbing procedure, until a
situation is reached where no improving move
exists. Tabu search, however, favors a more aggres-
sive orientation, seeking the highest-quality move
that can be expected for a given expenditure of
search effort, subject to the restrictions imposed by
the tabu conditions and moderated by the aspira-
tion level.

The operation of checking the sampling criteria
at Step 7 has an additional function. Except in those
variations where tabu status is enforced by penali-
zing rather than forbidding certain moves, it is
possible that no move in the Sample Set is admiss-
ible. Once such a condition is discovered, the opera-
tion of selecting another move is performed by
temporarily relaxing the tabu restrictions to allow
at least one of the tabu moves to be classified
admissible. Alternatively, if the Sample Set has been
restricted to a subset of moves potentially available,
a new Sample Set may be created.

The issue of generating effective subsets of moves
for consideration may be classified under the head-
ing of candidate list strategies, and offers an ex-
tremely fertile area for investigation. As observed in
Glover (!989b), candidate list strategies encompass
a variety of well-known procedures, including simu-
lated annealing, as simple special cases.

Steps 8-10. These steps are self-explanatory or
involve considerations already discussed.

The preceding framework for the short-term
memory component of tabu search can be applied
to a wide range of settings. Although it leaves out
some considerations that can be important in spe-
cial contexts (see, e.g.. Glover, 1989a,b), its prin-
ciples are directly relevant to many combinatorial
problems.

The variant of the procedure called probabilistic
tabu search replaces the deterministic choice rules
previously described, by assigning probabilities
governing the acceptance of available moves which
reflect their evaluations and tabu status, while
allowing aspiration criteria to override these prob-
abilities for moves that are sufficiently attractive.
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Such probabilities characteristically are biased to
encourage the selection of highest evaluation
moves, again relying on candidate list strategies to
help isolate good alternatives when the effort of
examining the full set is laborious. Conditions for
converging to an optimal solution with a prob-
ability of I have been established for this variant by
Faigle and Kern, 1989, and are shown to be more
general than the corresponding conditions for
simulated annealing.

AN ILLUSTRATIVE EXAMPLE

To clarify the operation of the sbort-term memory
component of tabu search diagrammed in the pre-
vious section, and to identify some of the options
relevant to its application, this section traces the
solution steps for applying the to a zero-one IP
problem. The outcomes for each iteration are
shown in Table 1.

A brief description of the problem objective and
the types of moves selected, together with tabu
restrictions and aspiration criteria, appears at the
top of the table. Below this, in the main body of the
table, the objective function value is given for the
current solution at each iteration, followed by the
moves with the three best evaluations. These moves
are listed to disclose how the method operates when
one or more of the highest evaluation moves are
tabu. (Normally, the method would not undertake
to sort the top evaluations, but would simply
identify the best admissible move according to the
tabu restrictions and aspiration criteria.)

In this example the move evaluations correspond
to the XQ values produced by the moves. Since the
problem has a minimization objective, these XQ
values progress from smaller to larger as the moves
progress from Best to Second-best to Third-best.

The current solution vector and the tabu list at
each iteration are shown at the bottom of the table.
Initially, the tabu list (which in this example con-

Table 1. Tabu Search Illustrated _ . . ,|

Zero-One Integer Programming Problem

Objective: Minimize Xo = function of integer variables (x,, Xj, . . - . x,)
Move Type: Increase or decrease value of a selected variable by 1.

(Set the value to 0 or 1)
Tabu Restriction: Prevent a variable from decreasing if it was previously

increased, or from increasing if it was previously decreased
Aspiration Criterion: Override the tabu status ofa move if XQ can be improved

beyond the value it had when the move was made tabu
Choice: Pick the best move that is not tabu (or whose aspiration criterion is

satisfied)
Iteration

2 3
30 80

Best
move
Second-best
move
Third-best
move

x,=0 Xj-l

Current
solution (1,0,0,0,1)
Tabu state and
aspiration
value

(1,0,1,0,1) (0,0,1,0,1) (0,0,0,0,1)

x '= l (30 )

(0,1.0,0,1)

(*): Move selected.
(T): Tabu.
(TA): Tabu but passes aspiration test.

, = 1(30) x, = l(30)
3 = 1 (80) X3=l (80)



372 F. GLOVER

tains only three elements) contains no entries, as
indicated by the black dots in the cells. Thereafter,
the entries in the ceils indicate both the tabu moves
and, in parentheses, the aspiration values for XQ
which allow tabu status to be overridden. The
entries of the table may be explained as follows.

Iteration 1. Starting from an initial solution with
Xo = 60, identified by the vector (1,0,0,0, 1), the
method examines the moves that change exactly
one Xj value in this vector (from 0 to 1 or from 1 to
0). The moves yielding the three best values for XQ
are shown in the table as X3= 1, x, = 0 and X2 = I,
which, respectively, give XQ = 30, Xo = 40 and
XQ = 85. (The first two moves improve the current XQ
value, while the third does not.) No moves are tabu,
so the best move x, = I is selected, as indicated by
the (*) symbol. The reverse move x^^O becomes
tabu and is entered on the tabu list. The entry
appears in the tabu list for Iteration 2 rather than
for Iteration t, however, since this list shows the
tabu status for moves at the start of each iteration.
The aspiration value of 60 is recorded with the tabu
move, because Xo = 6O occurs for the solution of
Iteration 1, and this is the value to beat if the move
X3 = 0 is to be considered admissible.

Iteration 2. The solution obtained by setting Xj
= 1 in Iteration 1 appears in the column for Iter-
ation 2, identified by (1, 0, 1, 0, 1) with Xo = 30. The
best move results by setting X3 = O to yield Xo^6O.
(This discloses that a local optimum has been
reached, because the best move does not lead to a
solution better than the present solution with XQ
= 30). The tabu list shows, however, that the best
move is tabu, and the associated aspiration value of
60 is not surpassed by the value Xo = 60 of this
move. (The move under consideration leads directly
back to the solution of Iteration I). Consequently,
the symbol (T) appears in the cell to indicate the
move's tabu status. In computer implementation,
tabu status arrays such as the tabu-time (e) array
permit such information to be determined directly
without having to search a list of the form shown
here.

The next best move, which yields Xo = 80 for Xj
= 0, is not tabu and hence is selected. The reverse
move, Xj = 1, is entered in the next available posi-
tion on the tabu list (appearing in Iteration 3 to
disclose the list condition at the start of that iter-
ation), together with the aspiration value of 30,
corresponding to the fact that XQ = 30 in the solu-
tion of Iteration 2.

Iteration 3. The best available move once again
is tabu, and hence is not taken. In this case the
second-best move also appears on the tabu list. This
move, X3 = 0, has an aspiration value of 60, while
yielding Xo = 40, and hence passes the aspiration
test. The symbol (TA) identifies the move's admissi-
bility in spite of being tabu, and this move is
selected.

The tabu list is ujxlated as before, yielding the
new tabu list which appears on the column for
Iteration 4. This list contains two entries for Xj, one
for Xj = 0 and one for Xj = 1. This does not currently
create a problem, since the entry for x_,=0 is
irrelevant to the current solution (in which x^
already is 0). In general, however, it would be
preferable to erase such an irrelevant entry, i.e.
replacing it by a black dot in the table, to avoid the
possibility of future ambiguities.

A superior method exists for updating aspiration
criteria of the type used in this example when the
tabu status of a move is overridden. An approxima-
tion to this approach is to subtract an amount D
from the aspiration values for all tabu moves re-
corded since the tabu move s that was overridden,
where D is equal to the aspiration value for the tabu
move recorded immediately after s, minus the as-
piration value for s. If D is negative, then this step
should only be applied to the aspiration value for
the first tabu move after s.

Iteration 4. The solution reached at this iteration
is another local optimum, evidenced by the fact that
the best available move results in XQ = 60, as con-
trasted with the current Xo = 40. The second-best
move, which is the highest evaluation move that is
not tabu, is selected. Since the most recent tabu list
entry occurred in the last position, the entry for the
current move is made in tbe first position (to record
tbe current tabu restriction X2 = 0). This removes
the tabu restriction previously recorded in the first
position, rendering it inapplicable.

Iteration 5. The highest evaluation move, x^^ 1,
is admissible to be selected and hence becomes the
current choice. (The second-highest evaluation
move is also admissible as a result of passing the
aspiration test.) The solution associated with this
move yields Xo = 20, which is better than any thus
far produced, qualifying the solution as the new
current best.

Additional columns of the table may be gener-
ated in a corresponding manner, given a subroutine
capable of identifying evaluations (i.e. in this ex-
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Table 2. Example problem (Solved by Tabu
Search in Table I)

Minimize 2O.t,-l-25x2-30x3-45x4-l-40xj
Subject to

-X2 +Xt

All variables 0— 1
Penalty for each unit of constraint violation:

70/unit for each of the first two constraints
lOO/unit for each of the last two constraints

ample, the XQ values) that result for available moves.
Table 2 identifies the problem that was solved by

the process illustrated in Table 1. (Tbe solution with
Xo = 20 is in fact optimal for this problem.) This
table was not provided earlier because of the diffi-
culty of tracing relevant correspondences between
the solution process and the problem data, and the
effort of verifying the associated arithmetic calcu-
lations. Table 2 is instructive at this point as a
means of disclosing how tabu search can be applied
to a problem of this type in more than one way.

The initial solution of Table 1 is feasible for the
problem of Table 2. The solution process illustrated
in Table 1 is not based on requiring all subsequent
solutions to be feasible, but instead allows consid-
eration of infeasible moves, which are evaluated by
imposing penalties on violating the constraints.
These penalties, identified in Table 2, produce a
solution trajectory in which one of the constraints
becomes violated during the solution process.
(Other penalties, leading to different trajectories,
also could have been used.)

Combinatorial optimization problems are not
always conveniently structured to assure a feasible
path will exist between all feasible solutions, and
hence some method of allowing infeasible solutions
to be evaluated and visited is important. Besides
employing evaluators that penalize infeasibilities in
various ways, tabu search also provides an ap-
proach called strategic oscillation, which introduces
additional tabu restrictions to compel the search to
cross feasibility boundaries to various depths
(Glover, 1986, 1989a). The strategic oscillation ap-
proach has been effective in applications that have
included the solution of p-median (lock box) prob-
lems and large-scale employee scheduling problems
(Glover, 1989a; Glover and McMillan, 1986).

From the perspective of the example problem this
approach leads to consideration of a particular
variation that invites further exploration. The stra-
tegic oscillation procedure often incorporates a
shifting evaluation criterion that varies the em-
phasis on feasibility and optimality considerations
(at different depths and on different sides of feasibil-
ity boundaries). A natural way to carry out this type
of process is to use adaptive penalty values for the
different problem constraints.

For any given set of such penalties the problem is
effectively transformed into an integer goal pro-
gramming problem. Consequently, the use of
successive (implicit) transformations of this sort
gives rise to what may be called a tabu goal pro-
gramming procedure, where the word *tabu' conveys
not only the use of tabu lists to avoid cycling but the
adaptive manipulation of penalties according to the
objectives of the strategic oscillation element of
tabu search. (Effective use of such penalties should
reduce the size of the tabu list that otherwise might
be employed.) This type of procedure offers inter-
esting possibilities to be investigated in integer
programming applications.

TARGET ANALYSIS

A careful consideration of heuristic solution pro-
cedures sooner or later encounters the challenge of
determining more advanced evaluation measures
than embodied in objective function values pro-
duced by available moves, as the preceding discus-
sion underscores. In contexts where relaxation
strategies are used, as in obtaining LP solutions as
part of a method for solving integer programming
problems, a true objective function value for a move
(which results when the relaxed formulation is
replaced by the original) may not be known or
readily determined. A similar situation occurs in
certain scheduling problems, where the implica-
tions of making a move do not become visible until
the schedule approaches a completed state.

Target analysis (Glover, 1986; Glover and Green-
berg, 1989; Glover and Laguna, 1989; Glover et ai,
1989) is a method that can be used to determine
more effective decision rules in such situations. The
principles of target analysis harmonize well with
those of tabu search, and the method also can be
applied in conjunction with many other procedures.
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Its main features may briefly be sketched by viewing
the approach as a five-phase procedure, as follows.

Phase 1 of target analysis is devoted to applying
existing methods to determine optimal or near-
optimal solutions to representative problems from a
given class. This phase is straightforward in its
execution, although a high level of effort may be
expended to assure the solutions are of the specified
quality.

Phase 2 uses the solutions produced by Phase 1
as targets, which become the focus of a new set of
solution passes. During these passes, each problem
is solved again, this time scoring all available moves
(or a high-ranking subset) on the basis of their
ability to progress effectively toward the target
solution. (The scoring can be a simple classification,
such as 'good' or 'bad'.) Choices may be biased
during this phase to select moves that have high
scores, thereby leading to the target solutions more
quickly than the customary choice rules. Informa-
tion generated during the solution effort, which may
be useful in inferring these scores, is stored for later
analysis.

Phase 3 constructs parameterized functions of
the information recorded in Phase 2, with the goal
of finding values of the parameters to create a
master decision rule. This rule is designed to choose
moves that score highly according to the outcomes
of the second phase.

Phase 4 generates a mathematical or statistical
model (such as a generalized goal programming or
discriminate analysis model) to determine effective
parameter values for the master decision rule. (The
second, third and fourth phases are not entirely
distinct, and may be iterative.) On the basis of the
outcomes of the Phase 4, the master decision rule
becomes the rule that drives the solution method.
This rule itself may be evolutionary, i.e. it may use
feedback of outcomes obtained during the solution
process to modify its parameters for the problem
being solved.

Phase 5 concludes the process by applying the
master decision rule to the original representative
problems and to other problems from the chosen
solution class to confirm its merit. (The process can
be repeated and nested to achieve further refine-
ment.)

Target analysis has an additional important func-
tion. On the basis of the information generated
during its application, and particularly during its
final confirmation phase, the method produces em-
pirical frequency measures for the probabilities that

choices with high evaluations will lead to an op-
timal (or near-optimal) solution within a certain
number of steps. By this means, target analysis can
provide inferences concerning expected solution
behavior, as a supplement to classical 'worst case'
complexity analysis. These inferences can aid the
practitioner by indicating how long to run a solu-
tion method to achieve a solution of desired quality
(and with a specified empirical probability).

In combination with an effective heuristic frame-
work such as tabu search, target analysis appears to
offer a promising foundation for further advances in
solving difficult optimization problems.
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