Multilevel Cooperative Search for the
Circuit/Hypergraph Partitioning Problem

Min Ouyang
Department of CS&E, University of Nebraska-Lincoln, mouyang@cse.unl.edu

Michel Toulouse
Department of Computer Science, University of Manitoba, toulouse@cs.umanitoba.ca

Krishnaiyan Thulasiraman
School of Computer Science, University of Oklahoma, thulasi@cs.ou.edu

Fred Glover
Hearin Center for Entreprise Science, University of Mississippi, fglover@bus.olemiss.edu

Jitender S. Deogun
Department of CS&E, University of Nebraska-Lincoln, deogun@cse.unl.edu

Abstract Our objectives in this paper are twofold: design an approach for the netlist partitioning
problem using the cooperative multilevel search paradigm introduced by Toulouse, Thulasiraman
and Glover [20], and study the effectiveness of this paradigm for solving combinatorial optimization
problems, in particular, those arising in the VLSI CAD area. We present a cooperative multilevel
search algorithm CoMHP and describe a parallel implementation on the SGI 02000 system. Exper-
iments on ISPD98 benchmark suite of circuits show, for 4-way and 8-way partitioning, a reduction
of 3% to 15% in the size of hyperedge-cuts compared to hMETIS. Bisections of hypergraphs based
on our algorithm also outperform hMETIS, although more modestly. We suggest some possi-
ble improvements in the implementation of the cooperation strategy. The experimental results
demonstrate the effectiveness of the cooperative multilevel search paradigm for solving the netlist
partitioning problem. Our outcomes disclose that the cooperative multilevel search strategy can
be used as a paradigm for designing effective solution techniques for combinatorial optimization
problems such as those arising in the VLSI CAD area.

Submitted to IEEE Transactions on Computer Aided Design

1. INTRODUCTION

Netlist partitioning is an important and well-studied re-
search area in VLSI CAD. Several classes of heuristics have
been proposed to address this problem [3]. Recently, multi-
level algorithms have been applied to the netlist partitioning
problem [13]. This approach has since become the standard
to partition netlists.

The multilevel paradigm in the context of netlist parti-
tioning enables Fiduccia-Mattheyses (FM) types of move-
based heuristics to execute moves involving static clusters
(blocks) of modules in the netlist (usually a move only in-
volves one or two modules). This strategy of multilevel algo-
rithms is a variant of k-exchange [1], a well-known technique
to create variations in the neighborhood structure of local
search algorithms. Usually, applications of k-exchange to
define the neighborhood structures do not change the op-
timization problem but they have an impact on local opti-
mality and consequently on the local search problem solved
by the move-based heuristics. The multilevel variant of k-
exchange is a little more drastic. Besides changing the neigh-
borhood structures, it also reduces the size of the solution
space through the coarsening of netlists. This coarsening
constitutes a relaxation of the optimization problem which
enables to achieve gains in computational speed. But coars-
ened netlists are static. Consequently multilevel algorithms
can only swap fixed blocks of modules. This constraint may
strongly impair FM and other move-based heuristics by re-
stricting their operations to work with a limited set of blocks
which may be potentially flawed. This imposes serious lim-
itations on the ability of multilevel algorithms to provide
good quality partitionings. These limitations of the multi-
level paradigm have been recently addressed in [9; 13] using
more dynamic coarsening strategies. In the present paper we
provide a broader design strategy to address this problem.

Our approach is based on a bottom-up algorithm design
technique called cooperative search. According to this ap-
proach, a set of different search algorithms is first selected.
Each algorithm is an independent program that runs in a
time sharing manner with the other programs on a sequen-
tial computer or in parallel if several computers are available.
If the difference among the programs is only based on the
stochastic properties of a generic algorithm or on different
search parameters, then we can think of those programs as
the multiple restarts of a same algorithm. Unlike restart,
programs in a cooperative search interact with each other
based on a cooperation protocol that specifies how the search
programs cooperate at run time. Cooperation, as framed in
Huberman’s paper [12], is an exchange of “hints” that may
confuse some processes, but will also help others. Over all,
hint sharing improves the performance because we only care
about the best performers and some of them do even better
with hints. This approach has been used with success to
design search heuristics in the context of constraint satisfac-
tion problems [4; 10] and to parallelize some metaheuristics
[15; 16; 18; 19]. More recently, in [20], we have applied
cooperative search to graph partitioning quite successfully.

The present paper introduces the Cooperative Multilevel
Hypergraph Partitioning algorithm (CoMHP), an asynch-
ronous variation for hypergraph partitioning of the cooper-
ative algorithm in [20]. Our hypergraph partitioning method
uses a new netlist coarsening strategy which is based on par-
titioning rather than clustering as it is usually done by multi-
level algorithms. We motivate this coarsening approach and

analyze its complexity. The main contribution of this pa-
per is a parallel design of multilevel algorithms based on the
cooperative search paradigm. We describe how to obtain in-
dependent searches out of clusters in coarsened hypergraphs
combined with the same FM heuristic. Next, once Hp, the
hypergraph representation of a given netlist, has been coars-
ened into hypergraphs Hi, Ho, ..., Hj, each hypergraph
becomes the input of one independent move-based search
process. The [4+ 1 search processes are run concurrently.
The cooperation protocol, which is the main ingredient of
cooperative search, uses three different forms of strategies
for interactions among the processes. Let po,... ,p be the
search processes (process p; has coarsened hypergraph H;
as input). In the first strategy, each process p; obtains par-
titionings from coarsened hypergraph H;;1 and uses these
partitionings as initial solutions to the move-based heuris-
tics that constitute the search algorithm of process p;. (This
operator is similar to the interpolation operator of multilevel
partitioning algorithms.) The two other interaction strate-
gies borrow partitionings from H;_1 to modify the coarsen-
ing of hypergraph Hj;, either by splitting vertices of H; or
by aggregating vertices of H;_1, to yield a new coarsening
of the vertices of Hyp in H;. We call these last two strategies
the local partitioning operator and the local clustering oper-
ator, respectively. The execution of the three strategies is
triggered by the internal state of the processes. Therefore,
as a whole, the computation is asynchronous.

The rest of the paper is structured as follows. Section
2 describes the standard multilevel approach to partition-
ing, identifying the main weakness of this approach and
discussing how our cooperative search design addresses the
problem. Section 3 describes our algorithm and its imple-
mentation. Section 4 reports and discusses the results of the
tests conducted on the ISPD98 benchmark suite of circuits.
Finally, Section 5 concludes with some suggestions for future
work.

2. THE MULTILEVEL ALGORITHM

Hypergraphs are commonly used by multilevel algorithms
as a formal representation of netlists. Let Ho = (Vo, Eo) be
a hypergraph representation of a given netlist instance. Vy
is a set of n vertices and Eo a set of m hyperedges which
represent, respectively, the modules or vertices and signal
nets of the netlist. The set Ep is a subset of the powerset
2V0 of the vertices in Hy, i.e., e € Ey is a subset of Vo. Given
this formalization, the problem of partitioning the modules

of a netlist into x subsets Pi, Ps,..., P, can be stated as a
combinatorial optimization problem where one tries to find
an instance {Pi, P», ..., P.} of the mapping
PV — 2", (1)
The goal is to minimize the cost function:
m
fle) =" w(e) ()
i=1

where w(e;) = 1 if e; is a hyperedge that spans more than
one P;, and w(e;) = 0 otherwise. The subsets P; are subject
to the constraints:

L BNP =0 (i #);

2. % <|P| < % for some constant ¢ > 1.0;

3. UL, P =Ve.

Constraint (1) indicates that module replications are not
allowed and constraint (2) sets bounds on the cardinality of
the subsets P; in the partitions.

Multilevel algorithms initiate processing by a sequence of
different relaxations of the optimization problem (2). These
relaxations are obtained by mapping the flattened hyper-
graph Hj into [hypergraphs with fewer vertices. This phase
of the processing is identified as the coarsening phase, and
is usually based on hierarchical clustering strategies applied
on Hy. We define hierarchical clustering in the following
manner:

DEFINITION 1. A hierarchical clustering algorithm is a
family of I mappings:

Ci:Vo—2" i=1,...,1 (3)

where each mapping C; defines a mapping instance of the
vertices of Ho into |V;i| clusters Ci1, Cia,...,Cyy, where
CiuNCip =0 if u # v and u‘jﬁ{(]ﬁ = Vo. Furthermore,
[Vil > |Vit1], for alli=1,2,...,1—1.

DEFINITION 2. A coarsened hypergraph H; = {V;, E;} is
a set of vertices V; and hyperedges E; such that i) v € V;
s a cluster (subset) Cji; of vertices from Vi as defined by
the mapping C; (Note: to simplify notation, v may also be
denoted by the corresponding cluster Cs;); and i1) for u # v,
e = {Ciu,Civ} € E; iff 3a,b € Vo such that a € Ci and
b € Ciy and {a,b} C e for some hyperedge e € Ey.

A hierarchical clustering algorithm generates a sequence
of increasingly coarsened hypergraphs where H;;; is more
coarsened than H;. In practice, many hierarchical clustering
algorithms generate the mapping of the vertices of Hy based
on some characteristics of the coarsened hypergraph H;_;
rather than directly from the hypergraph Hy. For example,
in recursive mazimal matching, vertices of Hy are mapped
into clusters of C; by merging randomly pairs of vertices of
the coarsened hypergraph H;_;. For standard multilevel
algorithms, coarsening is followed by a partitioning of the
most coarsened hypergraph and by the refinement of this ini-
tial partitioning using the other less coarsened hypergraphs.
During these last two phases of multilevel algorithms, par-
titionings are obtained and refined by FM-like heuristics in
a sequence going from H; to Hp.

FM heuristics are exchange-based (move-based) heuris-
tics. Typically, one iteration of a FM heuristic yields a new
partitioning from the current partitioning by exchanging a
vertex a € P; with a vertex b € P; where P;, P; are two
different subsets of the current partitioning. However, fol-
lowing Definition 2, a single FM exchange in a coarsened
hypergraph H; involves the exchange of clusters of vertices
in Vp. Exchanges executed by FM heuristics in coarsened
hypergraphs correspond to k-exchange moves in hypergraph
Hy, i.e., the exchange of clusters of vertices in Hy.

k-exchange moves are a key ingredient in the design of
heuristics and metaheuristics for discrete optimization prob-
lems. The k-exchange moves allow, for example, quick sur-
veys of the solution space. An important feature of multi-
level k-exchange moves is that they can only exchange fixed
clusters of vertices of Ho based on the coarsening of hyper-
graphs. Only a very small subset of the possible combi-
nations of vertices in Hy are represented in the [different

coarsenings. This situation restricts the search performed
by each k-exchange FM heuristic to limited regions of the
solution space of Problem (2). Furthermore, randomized
coarsening strategies drive out, by definition, low and high
cost partitionings. (If the randomized coarsening is based
on a uniform distribution, low and high cost partitionings
have the same probabilities of being eliminated as any other
partitionings.) This property of randomized coarsening has
a leveling action on the solution space of coarsened hyper-
graphs that can obliterate optimal valleys from the land-
scape of the cost function for those coarsened hypergraphs.
FM heuristics are gradient heuristics: if the valleys of the
optimal solutions have been removed by coarsening, then
the initial partitioning and refinement in the most coars-
ened hypergraphs will be of no use. Some other coarsening
strategies (for example, edge-weight based coarsenings) try
to populate the coarsened hypergraphs with “better than av-
erage” partitionings. This approach however has a tendency
to favor some of the better than average partitionings at the
expense of others, reducing the diversity of the partitionings
represented in the coarsened hypergraphs. This could lead
to a poor exploration of the solution space of Problem (2)
because FM heuristics are trapped in specific regions of the
solution space.

These problems have been partially identified in [9; 13] by
observing that an initial partitioning can be refined in dif-
ferent ways depending upon how the coarsening is executed
[13]. A multi-phase refinement has also been proposed to
improve the search. This multi-phase refinement is based
on a recursive call of the multilevel algorithm from the same
coarsened hypergraph. A randomized coarsening is used for
the multi-phase refinement. In [13] this coarsening is initi-
ated from the best partitioning obtained from the refinement
or a previous iteration of the multi-phase refinement. The
multi-phase refinement iterates until the best solution can-
not be improved further. The refinement of the multilevel
procedure is then resumed.

Our algorithm is similar in spirit to multi-phase refine-
ment because it also produces many “re-coarsenings” of the
hypergraph. However it is implemented in the context of the
cooperative paradigm. The characteristics of our approach
are the following:

e Unlike multi-phase refinement, new coarsenings are
created at all the levels in parallel.

e We use a new operator to obtain new coarsenings (the
partitioning operator).

e The cooperative approach is more diversified given that
the solution space is explored concurrently and infor-
mation sharing is local. For example, in some imple-
mentations of multi-phase refinement, the same parti-
tioning is used to generate all the new coarsenings in
one multi-phase cycle. In the cooperative approach,
a partitioning determines the coarsening of only those
neighbor hypergraphs in the hierarchical structure.

e Standard multilevel implementations, including multi-
phase approaches, are at the mercy of a bad start
(poor initial partitioning). Restarts are used to reduce
the influence of bad starts. Cooperative multilevel ap-
proach does not apply “independent” restarts; rather
it has several processes cooperating with one another.

The next section describes the details of CoOMHP and its
implementation.

3. CoMHP: DESCRIPTION AND IMPLEMEN-

TATION
3.1 CoMHP CoarseningPhase

Usually recursive matching-based clustering algorithms such
as edge-coarsening, hyperedge-coarsening, mazimal match-
ing and modified-hypergraph-coarsening [5; 13] are used to
reduce (coarsen) the size of the netlist. In our approach to
coarsening, we generate coarsened hypergraph H; directly
from the netlist, not from the hypergraph H;_;. We ad-
dress the problem of contracting the netlist as a partitioning
problem. To obtain a hierarchy of coarsened hypergraphs
as defined in (3), we solve the partitioning problem (2) for
Kk = ki = 5,0 < i <. More specifically, we seek a mapping
instance C; = {Ci1, Cia, - . . ’Cii} that minimizes the cost

function (2), where 2 is the size of the clusters at level i and
n

57 is the number of clusters. We call this hierarchical coars-
ening strategy as partition-based coarsening. The coarsening
phase of our algorithm uses a %-way partitioning to get Hi,
sz-way partitioning to get H>, and so on.

The partition-based coarsening strategy is a compromise
between maximal matching that might obliterate too many
good solutions and a coarsening phase biased by the edge-
weights. By having a coarsening phase that is biased by
several cost functions, we hope to obtain diversified sets of
clusters of vertices from Vj in the different coarsened hy-
pergraphs. This is not however a very good compromise in
terms of run time and space efficiency. We need to run a par-
titioning method to generate each of the I coarsened hyper-
graphs of CoMHP. The sequential time complexity of a par-
titioning method generally depends on two inputs: the size
of the hypergraph and the number & of subsets in the parti-
tioning. The worst case for COMHP occurs when k = 3, the
number of vertices of Hi, the least coarsened hypergraph of
CoMHP. The sequential time complexity of the coarsening
phase for COMHP is then given by the sum of the sequential
times of the ! partitioning processes.

The coarsening phase of COMHP can be easily paral-
lelized. One only needs to run each partitioning process on
a different processor. The parallel time complexity is then
dominated by the processor that computes the partitioning
for k = %. The space complexity of sequential CoMHP is
O(2 x (Vo + Ep)), which is the space needed to load Hp
and to store Hi to H;. The space complexity of parallel
CoMHP is O((1 + 1) x (Vo + Eo)) on SMP computers; Hy
is loaded and shared by all the processes while space is re-
quired to store the coarsened hypergraphs generated by each
multilevel partitioning process. If non-multilevel partition-
ing methods are used, then the space complexity of parallel
CoMHP is the same as for sequential CoMHP. Other op-
tions are available to implement our model of the coarsening
phase. We can ask the partitioning method to compute a
k-way partitioning where kK = 7, the number of vertices in
H,. Hypergraph H; corresponds to the log, n — 1th bisec-
tion of the partitioning method. For the other hypergraphs
H,, Hs, ... ,H;, we use respectively the partitionings of the
bisections log,n — 4, 1 < 4 < l. Assuming the partition-
ing method is not parallelized, this needs about the same
computational time as our current parallel coarsening im-

plementation but uses substantially less space. We have
used this approach for the version of our algorithm applied
to graph partitioning [20].

The way we compute the coarsened hypergraphs directly
from Ho has some impact on the refinement phase. When
the mapping of vertices of Hg to clusters of H; is based
on a recursive coarsening algorithm, a vertex C;; € H; is
usually constituted from the aggregation of two vertices of
H;_;. Therefore C;; € H; = C(;_1), U C(;_1)q for some ver-
tices C;—1)p, Ci—1)qg € Hi—1. So if v € Ho is mapped to
C(i—1); € H;—1, then v is automatically mapped to Cj;, the
superset of C(;_1); in the coarsened hypergraph H;. There-
fore hypergraphs are considered as related level by level.
This is not necessarily the case when using our coarsening
strategy. The vertices of Ho that are mapped to a clus-
ter C;; € H; can be spread among several clusters in each
hypergraph H;, j > 4. For example, in Section 3.2.3, the
design of our interpolation operator reflects the fact that the
coarsened hypergraphs in CoMHP are not related level by
level.

Whether we use a direct or a bisection k-way partition-
ing algorithm for our coarsening phase, the solution spaces
are biased by the cost function of the partitioning prob-
lem solved at each coarsened hypergraph. We have done
some preliminary tests with coarsening strategies not re-
lated to our partition-based coarsening approach. We al-
ways found better partitionings during the initial partition-
ing phase as well as during the refinement phase when hyper-
graphs are clustered by a partition-based coarsening strat-
egy (compared to matching-based coarsening strategies).
Partition-based coarsening appears to generate coarsened
hypergraphs which have fewer hyperedges spanning several
vertices compared to those obtained by matching-based coars-
ening. In this case, the average of the hyperedge-cuts of the
solution spaces should not be constant and should be lower
compared to a matching-based coarsening. Most likely, the
partitioning phase will be initiated from solution spaces with
several local optima. For a standard multilevel algorithm,
having fewer hyperedges can be a handicap that induces the
method to become trapped during the uncoarsening phase
in the local optima of the solution spaces.

3.2 CoMHP RefinementPhase

The coarsening phase defines ! new k-exchange FM heuris-
tics. We can then said that the family of mappings in Defini-
tion 1 together with the standard FM heuristic constitutes
the set of independent search algorithms in the coopera-
tive scheme. Each algorithm (process) p; takes as input the
coarsened hypergraph H; from which an initial partitioning
is computed by each process. We now introduce the co-
operation protocol that transforms this set of independent
algorithms into cooperating processes.

For standard multilevel algorithms, the sharing of infor-
mation among hypergraphs is limited to one best partition-
ing. The design of COMHP is based on a set of “elite” par-
titionings, generalizing the scheme for standard multilevel
algorithms. The elite partitionings of a hypergraph H; are
collected in X; C Xp (Xp is the solution space of Hy) such
that the average of the hyperedge-cuts of the partitionings in
X is better than the average of the hyperedge-cuts of all the
partitionings identified in H; by the move-based heuristics.

Formally, a set of elite partitionings X; is defined by:

Yzex: f(@) vex, f(@

for some real constant ¢ < 1, and where X; is the set of
partitions visited by search heuristics at level 3.

Usually, multilevel algorithms use a clustering operator
where vertices of hypergraph H; are obtained by aggregating
vertices from H;_1. The CoMHP refinement phase uses an
operator that we call local clustering. But there is second
operator that splits vertices of H; in order to get a new
coarsening. We call this operator local partitioning.

3.2.1 Local partitioning operator

Local partitioning changes the coarsening of H; by splitting
some of its vertices. Vertices (clusters) in H; are destroyed
based on a set of elite partitionings X;_; from hypergraph
H;_1. The local partitioning operator finds clusters v € V;
(line 1 in Figure 1) such that v has at least two vertices
a,b € Vy that are into two different subsets (line 4) of at
least one of the elite partitionings of X;_; (line 2). When
this happens, the vertices of Hy in the intersection of the sets
v N P, form a new vertex v; of H; (line 5). Following the
execution of local_partitioning, a new coarsened hypergraph
H; is generated that reflects the changes in the set of vertices
of Hi.

Local_partitioning();
1. for (¢=1;¢ < |Vil;q++)
v = gth vertex of V;; stop = false; j = 1;
2. for (r =1;r <|X]_{|;7++)
if (not stop) then
for (s =1;s < k;s++)
if (vNPs#0) & (v Ps)) then
create new vertex v; = v N Ps; 7 + +;
if (j > 1) then
stop = true; mark v to destroy;

el

Figure 1: Pseudo-code of the local partitioning operator

In terms of implementation, we have limited the set X]_;
to only two partitionings from X;_; each time local parti-
tioning is executed. A future work will test strategies for
selecting elite solutions, drawing on guidelines proposed in
Glover and Laguna [8] and Glover [7].

3.2.2 Local clustering operator
Local clustering changes the coarsening of H; by aggregating
some of the vertices (clusters) of H;_; into new vertices for
H;. Vertices from H;_; are selected for aggregation based
on the fact that they are in the same subsets of each of the
elite partitionings in X]_; (line 5 in Figure 2). That is, local
clustering looks for a vertex v € V;_1 (line 1) which is in the
same subset Ps (lines 2 and 4) for all elite partitionings of
X;_1 (lines 3 and 4).
Once the vertices of H;_1 that are candidates for merging
have been identified, pairs of vertices are merged according
to the two following criteria: 1) the two vertices are in the
same subset s for all elite partitionings from Xj_;; 2) the
two vertices lie on the same hyperedge. (The merging of
vertices is not shown in Figure 2.)

Local clustering tends to reduce the number of vertices in
a coarsened hypergraph. This balances the effect of the local
partitioning operator which tends to increase the number of
vertices. Empirically we have verified that the number of

Local_clustering();
L for (¢ =1;¢ < |Vi-1]50 + +)
v = gth vertex of V;_1; stop = false; j = 1;
2. for (s =1;s <kK;5++)
if (not stop) then

3. for (r = 1;7 <|X]_,[;r++)
4. if (v C Ps) then

it
5. if (] == ‘X;—l‘) then

stop = true; mark v as part of subset s;

Figure 2: Pseudo-code of the local clustering operator

vertices tends to be relatively constant in the coarsened hy-
pergraph although we do not do anything specific to keep
this number constant. In fact we hypothesize that this is
related to the way we define the set of elite partitionings.
For example, a less stringent definition of eliteness could
make it nearly impossible to find vertices to cluster, while a
more stringent definition might allow too many vertices to
be clustered. It seems likely in some settings that a fairly
restrictive definition of eliteness may be needed to allow ver-
tices to be clustered, but then too many will be clustered. To
avoid this, the definition of eliteness can be relaxed, and then
strengthened indirectly by stipulating that only m-element
subsets of the full set qualify as an ’elite set’.

3.2.3 Interpolation Operator

The interpolation operator chooses one partitioning in the
set of elite partitionings of H;+1 as an initial solution of
a move-based heuristic in hypergraph H;. Let z be this
partitioning of hypergraph H;y1. Because of the coarsening
strategy used in CoMHP, it is possible that vertices in H;
will overlap several subsets of partitioning z. A split of these
vertices in H; is performed using a similar procedure as for
the partitioning operator. Following the split, a FM search
is applied to hypergraph H; using an initial partitioning that
reflects the partitioning obtained from H;,.

3.24 The main loop of COMHP's processes

CoMHP uses elite partitionings in three different ways dur-
ing the refinement phase based on three different operators:
the local partitioning, local clustering and interpolation op-
erators. Each iteration of a process p; executes the following
outer loop: local partitioning, interpolation, local clustering
and global search. Special conditions hold for processes po
and p;. Figure 3 give the details this outer loop:

CoMHP(); /* process p; */
Compute an initial partitioning; /* initial partitioning phase of
standard multilevel algorithm */

While not terminated { /* begin outer loop */
1. Apply local partitioning to H;
la. Execute FMS and PFM on new Hj;
2. Apply interpolation to current H;
2a. Execute FMS and PFM using good partitionings of H;41;
3. Apply local clustering to current H;
3a. Execute FMS and PFM on new H;;
4. GlobalSearch() {

If number of vertices < 500

do random search;
else execute hMETIS; }
Save p;’s good local and global partitioning results;

} /* end outer loop */
End CoMHP

Figure 3: Main loop of CoOMHP

Each process of COMHP applies two different move-based
heuristics to perform local searches and two global search
algorithms. Local search algorithms start a search based
on an existing partitioning, while global search algorithms
first generate a partitioning and then perform a local search.
The local move-based heuristics are the Sanchis algorithm
(FMS) [17], and the multiway partitioning by free moves
(PFM) proposed by Dasdan and Aykanat [6]. For global
search we use a random search algorithm, where an initial
partitioning is generated randomly, followed by the execu-
tion of a local search to refine this partitioning. The ran-
dom search algorithm is used for higher levels, for coars-
ened hypergraphs having less than 500 vertices. We use the
multilevel m-way hypergraph partitioning algorithm [14] as
another global search algorithm in CoMHP.

Each time a coarsening is modified by one of the three
interaction operators, it changes one of the mappings in
the family described in Definition 1. A mapping instance
Ci = {Ci1,Ciz,... ,Cyv, } is an array of integers of size |Vo
that maps each vertex v € Vp into a cluster Cj; € C;. Parti-
tionings are also defined in the same manner using mapping
vectors. The total space requirement for those vectors is
O(2x1x|Vo]|). Each change to a coarsening or a partitioning
forces the update of a mapping vector. The time require-
ment for the three operators is dominated by the number
of vertices in Hy. For example, to execute one iteration of
local partitioning at level i, we need to perform one sweep
across the vertices of Hy using the mapping instance C; and
the partitionings of X;_; to obtain the set of vertices to
destroy. Then a second sweep across the vertices of Hp is
performed to get a new mapping instance C; and the new
coarsened hypergraph H; needed by the local and global par-
titioning methods. Therefore the time requirement for the
cooperation protocol is O(|Vo|) for each execution of one
of the operators. The time requirement of the cooperation
protocol is the same at all levels. Furthermore this time
requirement is insignificant compared to the time required
by the FM-based search heuristics. For example, the time
needed by level 1 to execute one iteration of the outer loop
compared with the time taken by the highest level in our
tests (level 10) is about 2. That is, level 10 executes about
25 iterations of the outer loop while level 1 executes one.

3.25 On the Dynamics of COMHP

CoMHP is a cooperative search algorithm. The require-
ments for cooperative algorithms are the following:

1. A large set of heuristically guided searches.

2. The searches apply successfully different search strate-
gies leading to non-redundant explorations of the so-
lution space.

3. Processes exchange some useful information (hints) that
allows some of them to cut the number of steps re-
quired to reach an optimal or acceptable solution.

4. Hints are statistically independent.

Experimental and analytical models of cooperative search
[12] show that the performance of cooperating processes is
log-normally distributed, contrasting with the normal dis-
tribution of independent searches (or restarts). The impact
of cooperation on the distribution is a smaller number of
average quality searches but with an increases of the length

of the tails on both sides of the distribution. The long tail
of the positive side of the distribution produces the overall
performance improvement.

Requirements 1 and 2 are necessary to provide statistical
independence among the hints. In practice however, these
requirements often conflict with one another. Either the
number of guided searches is too small or the exploration of
the different searches overlaps in the solution space. When
this happens, cooperative programs do not provide consis-
tent quality of solutions: they converge well on some in-
stances, yet very poorly on other instances of the same opti-
mization problem. Multilevel algorithms first attracted our
attention because of the constraints imposed by the coars-
ening phase on k-exchange moves. These constraints could
lead to poor exploration of the solution space in standard
multilevel algorithms. In a system of cooperating search
processes, those constraints help to provide conditions sim-
ilar to what is achieved by the statistical independence of
hints. The static nature of k-exchange moves executed by
FM heuristics in coarsened hypergraphs slows down the con-
vergence of cooperating processes and diffuses the impact
on convergence that can have good but sub-optimal hints
provided an operator such as interpolation. On the other
hand, operators such as local partitioning and local cluster-
ing allow for movement in the solution space by cooperating
processes. Those are basically the favorable conditions that
a large population of non-redundant searches will bring to
the dynamics of a system of cooperating processes.

The global control structure (the algorithm) induced by
the cooperation protocol of COMHP is the minimization of a
very simple energy function (similar to the energy function
of Hopfield networks [11]). As for multi-phase refinements,
the refinement phase of COMHP ends once there are no im-
provements in the quality of the best solutions. In the case of
CoMHP, the energy function is approximated by the sum of
the differences between the averages for the hyperedge-cuts
f(z) of the elite partitionings z of the different processes:

fl@) 2Liex;,, f(@)
— -

i1 5
X 0 ®

=1 EweX !
BE(x)=) { ’,
= | X
i=0
At its initial state, the elite partitionings of neighboring pro-
cesses have different hyperedge-cuts. This creates energy to
change the coarsening of the neighboring hypergraphs. New
coarsenings provide new elite partitionings which in turn
affect the coarsening of neighboring hypergraphs. This dy-
namics ends when all the elite partitionings have about the
same hyperedge-cuts, yielding the minimum energy level of
the system. Once the system has reached a minimum energy,
the cooperation protocol has a relatively limited impact on
the search process (only the interpolation operator is still
active). It is at this point that the three local operators
cease to have any significant impact on the exploration of
the solution space.

The number of processes in CoOMHP is small and the hints
are not statistically independent. There is quite a high de-
gree of correlations among the searches and among the hints
exchanged. Consequently, the performance of cooperating
processes in CoMHP is not log-normally distributed, rather
all the processes converge toward about the same quality of
solutions at the minimum energy level of the system. This
is not unusual for small systems of cooperating processes.
However the next section on experimental results shows that

the performance of COMHP is consistently better than in-
dependent (restart) searches. Actually this situation is con-
sidered to be the best scenario of cooperative search: an ad-
vance in the performance from all the cooperating processes
(as opposed to an advance for only a few best performers).

4. EXPERIMENTAL RESULTS

We have evaluated the performance of our CoMHP algo-
rithm on the ISPD98 benchmark suite of netlists [2], com-
paring the performance of CoMHP with version 1.5.3 of
the hMETIS partitioning package. We have implemented
a parallel version of our hypergraph partitioning algorithm
and have run it on the SGI computer at the RCF (Re-
search Computing Facility) of the University of Nebraska-
Lincoln. hMETIS has also been run on this same environ-
ment. RCF possesses a shared memory SGI 02000 system
with 16 250Mhz R10k CPUs, 4GB main memory, and runs
on the IRIX 6.5 Operating System. For each problem in-
stance, we have executed 10 runs of hMETIS with recursive
bisection and 10 runs with hMETIS-Kway (the direct ap-
proach) [14]. Our algorithm has been run for 10 iterations
of process po. Since hypergraph Hj is the largest one in the
sequence of hypergraphs, process po takes more time than
any other process to complete one iteration of the refinement
phase.

Tables 1 and 2 present the 2,4,8-way hyperedge-cuts for
respectively the unit cell area and the non-unit (real) cell
area with CoMHP (Co) and hMETIS (hM). Out of the 108
tests executed, hMETIS outperforms or yields the same re-
sults as CoMHP in 8 instances, while COMHP outperforms
hMETIS for 100 instances. For 2-way partitioning, the im-
provements of CoMHP over hMETIS are not significant.
For 4-way and 8-way partitioning, CoMHP can get up to
a 15% improvement in the hyperedge-cuts over hMETIS.
For hMETIS, Tables 1 and 2 report the best solution of
bisection or hMETIS-Kway. In 102 cases, hMETIS with bi-
section found the best solution while hAMETIS-Kway found
the best solution in the 6 other instances.

Tables 3 and 4 present the runtimes (parallel computa-
tional time) of both algorithms. For CoMHP, the runtime
indicates the total time to run 10 iterations of po plus the
time to perform the coarsening phase. For hMETIS we re-
port the time to execute 1 run of the bisection approach
in order to factor the use of several processors by CoMHP.
This biases the results slightly in favor of hAMETIS given that
CoMHP uses 10 processors only for a few problem instances.

In Tables 3 and 4, on average hMETIS is 20 to 25 times
faster than CoMHP for the 108 tests. A time optimized
implementation of COMHP can improve on the current pro-
totype in the following ways. The outer loop of CoMHP
has only a few sequential dependencies, therefore it can be
easily parallelized. For example, line la can be executed in
parallel with line 2, 2a, 3, 3a, and 4. Similarly, line 2a can be
executed in parallel with line 1a, 3, 3a and 4, etc. Though
this parallelization will not reduce the work ratio between
CoMHP and other partitioners, it will considerably improve
the time ratio. Secondly, the amount of improvement in the
hyperedge-cuts of COMHP is not significant after 2 or 3 iter-
ations of the search phase by process po. At that point the
energy function (5) is low and seems stable in its minimum.
Running the current prototype implementation of CoMHP
only 2 or 3 iterations will not result in any serious degrada-
tions of the results obtained using 10 iterations, which means

Table 1: Min-cut 2,4,8-way partitioning results with up to
a 10% deviation from exact partitioning, cells are assigned
unit area (Columns “hM” and “Co” stand respectively for
hMETIS and CoHMP).

Circuit 2-way 4-way 8-way
hM | Co | hM | Co | bM | Co
IBMO1 || 180 | 180 | 495 | 430 | 750 | 711
IBM02 262 262 616 560 | 1841 | 1483
IBMO3 || 953 | 950 | 1682 | 1619 | 2402 | 2219
IBMO04 || 529 | 530 | 1689 | 1597 | 2778 | 2507
IBMO5 || 1708 | 1697 | 3024 | 2888 | 4306 | 3874
IBM06 889 890 | 1484 | 1465 | 2275 | 2204
IBMO7 || 849 | 824 | 2188 | 2036 | 3308 | 3098
IBMO8 || 1142 | 1140 | 2363 | 2241 | 3469 | 3240
IBMO09 || 629 | 620 | 1670 | 1606 | 2659 | 2474
IBM10 || 1256 | 1249 | 2283 | 2164 | 3761 | 3305
IBM11 || 960 | 960 | 2321 | 2196 | 3433 | 3160
IBM12 || 1881 | 1872 | 3730 | 3520 | 5972 | 5384
IBM13 840 832 | 1661 | 1671 | 2717 | 2483
IBM14 || 1891 | 1816 | 3278 | 3097 | 5060 | 4263
IBM15 || 2598 | 2619 | 5019 | 4591 | 6623 | 5960
IBM16 || 1755 | 1709 | 3816 | 3745 | 6475 | 5360
IBM17 || 2212 | 2187 | 5395 | 5194 | 8695 | 7960
IBM18 || 1525 | 1521 | 2881 | 2810 | 5169 | 4435

Table 2: Min-cut 2,4,8-way partitioning results with up to
a 10% deviation from exact partitioning, cells are assigned
non- unit (actual) area.

Circuit 2-way 4-way 8-way
hM | Co hM | Co hM | Co
IBMO1 217 215 343 340 606 573
IBMO2 || 266 | 247 | 470 | 399 | 833 | 762
IBMO03 707 608 | 1348 | 1220 | 1981 | 1879
IBM04 440 438 | 1321 | 1209 | 2408 | 2241
IBMO5 || 1716 | 1681 | 3002 | 2895 | 4331 | 3950
IBM06 367 363 | 1149 | 1056 | 1716 | 1688
IBMO07 716 721 | 1539 | 1480 | 2918 | 2707
IBMOS8 || 1149 | 1120 | 2143 | 1992 | 3330 | 3120
IBM09 523 519 | 1418 | 1334 | 2337 | 2079
IBM10 || 769 | 734 | 1845 | 1636 | 3098 | 2751
IBM11 || 697 | 688 | 1893 | 1699 | 2948 | 2768
IBM12 || 1975 | 1970 | 3577 | 3402 | 4957 | 4762
IBM13 859 832 | 1698 | 1568 | 2439 | 2298
IBM14 || 1520 | 1494 | 3048 | 2869 | 4833 | 4360
IBM15 || 1786 | 1771 | 4435 | 4314 | 6111 | 5756
IBM16 || 1681 | 1639 | 3562 | 3149 | 5580 | 5146
IBM17 || 2252 | 2156 | 4824 | 4393 | 8222 | 7003
IBM18 || 1520 | 1520 | 3104 | 2941 | 4833 | 4416

Table 3: Run-time performance for min-cut 2,4,8-way parti-
tioning with up to a 10% deviation from exact partitioning,
cells are assigned unit area.

Circuit 2-way 4-way 8-way

hM | Co | bM | Co | hM | Co
IBMO1 (| 0.2 5 0.3 7 0.5 11
IBMO2 || 04 10 0.7 12 1.1 21
IBMO03 || 04 16 0.8 17 1.1 25
IBMO04 || 0.5 16 1.0 19 1.3 26
IBMO5 || 0.7 | 18 1.2 24 1.6 30
IBMO6 || 0.6 | 21 1.2 23 1.7 33
IBMOQ7 || 1.1 32 2.0 38 2.6 53
IBMO08 1.6 | 36 2.6 51 3.4 59
IBMO09 || 1.0 | 34 2.0 40 2.6 58
IBM10 || 2.2 | 56 3.5 65 5.0 91
IBM11 | 1.5 | 50 | 3.0 | 59 | 3.9 | 78
IBM12 1.9 | 62 4.6 73 5.1 | 115
IBM13 || 2.0 | 60 3.6 72 5.1 | 100
IBM14 || 5.9 | 79 9.1 | 141 | 13.0 | 169
IBM15 || 6.6 | 121 | 11.0 | 176 | 14.1 | 217
IBM16 || 7.6 | 142 | 13.3 | 192 | 19.0 | 238
IBM17 || 9.4 | 219 | 17.1 | 196 | 22.2 | 374
IBM18 || 7.7 | 178 | 15.1 | 192 | 20.4 | 301

we can get similar results as tables 1 and 2 with only about
1/5 to 1/3 run time as shown in tables 3 and 4. Thirdly, the
computational time of COMHP is dominated by the execu-
tion of the global and local search subroutines. We believe
we can reduce the time spent in the global and local searches
by adapting these routines to CoMHP, for example by not
flipping all vertices for refinement, but rather stopping the
search after flipping part (20%, for example) of the vertices.
However, even if all these optimizations were realized, it
is obvious that CoMHP will not be faster than hMETIS,
or other partitioners for this matter, given that CoMHP
uses repeatedly those partitioners as subroutines. On the
other hand, with the same amount of computing resources as
CoMHP (when runs for 10 iterations of po), hMETIS didn’t
improve noticeably the quality of partitionings reported in
Tables 1 and 2. We have done similar comparisons in our
work on graph partitioning [20], testing several partitioners,
with the same conclusions as for the current work.

5. SUMMARY AND DISCUSSION

We have explored two objectives: design an approach for
the netlist partitioning problem using the cooperative mul-
tilevel search paradigm introduced by Toulouse, Thulasir-
aman and Glover [24], and study the effectiveness of this
paradigm for solving combinatorial optimization problems,
in particular, those arising in the VLSI CAD area. We have
presented the design and parallel implementation of an algo-
rithm, called CoMHP, for the netlist partitioning problem.
In this algorithm we combine the multilevel paradigm and
the cooperative search paradigm and take advantage of the
good features of both these paradigms. To date, the most
successful approach to the netlist partitioning problem has
been the multilevel algorithm hMETIS of Karypis, Aggar-
wal and Kumar [13] which formulates the netlist partitioning
problem as a hypergraph partitioning problem. So, we have
chosen this algorithm for a comparative evaluation of the

Table 4: Run-time performance for min-cut 2,4,8-way parti-
tioning with up to a 10% deviation from exact partitioning,
cells are assigned non-unit (actual) area.

Circuit 2-way 4-way 8-way

hM [Co | hbM | Co | hM | Co
IBMO1 0.2 6 0.3 7 0.5 11
IBMO02 0.3 10 0.7 13 1.0 20
IBMO03 0.4 11 0.8 19 1.2 26
IBM04 0.5 16 0.9 18 1.3 26
IBMO05 0.6 18 1.2 23 1.6 35
IBMO06 0.5 15 1.2 22 1.7 35
IBMO07 1.0 29 2.0 41 2.7 54
IBMO08 1.2 25 2.2 35 3.1 57
IBM09 1.1 40 1.8 45 2.6 65
IBM10 1.7 52 3.4 64 4.9 93
IBM11 14 44 2.7 53 44 88
IBM12 2.0 58 3.8 75 5.1 | 113
IBM13 1.9 53 3.7 71 49 | 113
IBM14 6.0 81 9.0 | 145 | 13.0 | 151
IBM15 5.6 | 111 | 12.0 | 160 | 14.2 | 197
IBM16 6.7 | 168 | 13.1 | 197 | 18.0 | 264
IBM17 || 11.2 | 243 | 18.2 | 286 | 23.8 | 354
IBM18 8.7 | 189 | 15.9 | 235 | 20.5 | 296

quality of solutions produced.

In CoMHP, each level is associated with a coarsened (ap-
propriately reduced) hypergraph and a search program de-
rived from known heuristics such as the Fiduccia-Mattheyses
(FM) heuristics. These programs execute searches on the
coarsened hypergraphs at their respective levels. A distin-
guishing feature of COMHP is the use of a cooperation pro-
tocol to control the coarsening of the hypergraphs at the
different levels. This involves the use of three cooperation
operators. The effectiveness of the algorithm depends on the
specification and implementation of these operators. They
control the coarsening which impacts the solution subspaces
explored at the different levels. We have been conservative
in exploiting this aspect of the cooperation strategy. Im-
provements both in terms of computational time and quality
of partitionings will result from the choice of elite solutions
(those selected at each level for information sharing), the
choice of operators for refinement, and the selection of the
levels between which cooperation takes place.

Our cooperative search paradigm can be applied to create
partitioning methods capable of partitioning hypergraphs
with fixed vertices, which could enhance the usefulness of
this paradigm in VLSI design. The refinement phase of
CoMHP is flexible, and can adapt to local constraints im-
posed on coarsening by specific needs from the physical de-
sign process.

It is expected that a cooperative search algorithm will
requested more computational resources than the individ-
ual search algorithms cooperating with one another using
a cooperation protocol. In the case of COMHP, each itera-
tion of the slowest process executes hAMETIS, FM and FMS
as subroutines. It is then not surprising that CoMHP takes
considerably longer time than any of its subroutines. On the
other hand, our work supports the hypothesis that individ-
ual search algorithms, with the same amount of computing
resources as the cooperative computation (through restarts

or other means), cannot match the performance of a success-
ful cooperative algorithm. Based on the results presented in
this paper, we believe the multilevel design provides such a
successful approach to develop cooperation protocols. The
cooperative multilevel search paradigm in combination with
other heuristic will help produce solutions with better qual-
ity than those obtained by the original heuristics. This
paradigm will also be useful to design algorithms for other
combinatorial optimization problems (besides partitioning)
arising the VLSI CAD area. Our work in this paper is the
first study to demonstrate this.

6. REFERENCES

[1] EH.L. Aarts and J.K. Lenstra. Introduction. In
E. Aarts and J.K. Lenstra, editors, Local Search in
Combinatorial Oprimization, pages 1-17. John Wiley
& Sons Inc., 1997.

[2] C.J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel
Circuit Partitioning. In Proc. 34th ACM/IEEFE Design
Automation Conference, pages 530-533, 1997.

[3] C.J. Alpert and A.B. Kahng. Recent Developments in
Netlist Partitioning: A Survey. Integration: the VLSI
Journal, 19:1-81, 1995.

[4] S.H. Clearwater, B.A. Huberman, and T. Hogg. Coop-
erative Solution of Constraint Satisfaction Problems.
Science, 254:1181-1183, 1991.

[5] J. Cong and M.L. Smith. A Parallel Bottom-Up Clus-
tering Algorithm with Applications to Circuit Parti-
tioning in VLSI Design. In Proc. 30th ACM/IEEE De-
sign Automation Conference, pages 755-760, 1993.

[6] A. Dasdan and C. Aykanat. Two Novel Circuit Par-
titioning Algorithms Using Relaxed Locking. IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, 16(2):169-78, Feb. 1997.

[7] F. Glover. Scatter Search and Path Relinking. In D.
Corne, M. Dorigo and F. Glover, editors, New Ideas in
Optimization, pages 297-316. McGraw-Hill, 1999.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Aca-
demic Publishers, 1997.

[9] A. Gupta. Fast and Effective Algorithms for Graph
Partitioning and Sparse Matrix Ordering. Report RC
20496, IBM T.J. Watson Research Center, 1995.

[10] T. Hogg and C. Williams. Solving the Really Hard
Problems with Cooperative Search. In Proceedings of
the 11th National Conference on Artificial intelligence
(AAAI93), pages 231-236. AAAI Press, 1993.

[11] J.J. Hopfield. Neural Networks and Physical Sys-
tems with Emergent Collective Computational Abili-
ties. Proceedings of the National Academy of Sciences
of the United States of America, 79:2554-2558, 1982.

[12] B.A. Huberman. The Performance of Cooperative Pro-
cesses. Physica D, 42:38-47, 1990.

[13] G. Karypis, V. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel Hypergraph Partitioning: Application in
VLSI Domain. IEEE Transactions on VLSI Systems,
1998.

[14] G. Karypis and V. Kumar. Multilevel k-way Hyper-
graph Partitioning. In Proc. 86th ACM/IEEE Design
Automation Conference. Association for Computing
Machinery, 1999.

[15] K-G. Lee and S-Y. Lee. Efficient Parallelization of
Simulated Annealing using Multiple Markov Chains:
An Application to Graph Partitioning. In Trevor N.
Mudge, editor, Proc. 1992 of the Int. Conf. on Parallel
Processing, pages 111 177-180. CRC Press, 1992.

[16] D. Levine. A Parallel Genetic Algorithm for the Set
Partitioning Problem. In I.LH. Osman and J.P. Kelly, ed-
itors, Meta-Heuristics: Theory and Applications, pages
23-35. Kluwer Academic Publishers, 1996.

[17] L.A. Sanchis. Multiple-way Network Partitioning.
IEEE Trans. Comput., 38(1):62-81, Jan. 1989.

[18] V. Schnecke and O. Vornberger. An Adaptive Parallel
Genetic Algorithm for VLSI-Layout Optimization. In
H.-P. Schwefel Y. Davidor and R. Ménner, editors, Pro-
ceedings of the Fourth Workshop on Parallel Problem
Solving from Nature, pages 859-868. Springer- Verlag,
1996.

[19] M. Toulouse, T.G. Crainic, and B. Sansé. Self-
Organization in Cooperative Tabu Search Algorithms.
In 1998 IEEE International Conference on Systems,
Man, and Cybernetics, pages 2379-2385. Omnipress,
1998.

[20] M. Toulouse, K. Thulasiram, and F. Glover. Multi-
Level Cooperative Search. In 5th International Euro-
Par Parallel Processing Conference, volume 1685 of
Lecture notes in Computer Science, pages 533-542.
Springer-Verlag, 1999.

