EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

European Journal of Operational Research 137 (2002) 272-287
www.elsevier.com/locate/dsw

One-pass heuristics for large-scale unconstrained binary quadratic
problems

Fred Glover *, Bahram Alidaee, César Rego, Gary Kochenberger
Hearin Center for Enterprise Science, University of Mississippi, University, MS 38677, USA

Abstract

Many significant advances have been made in recent years for solving unconstrained binary quadratic programs
(UQP). As a result, the size of problem instances that can be efficiently solved has grown from a hundred or so variables
a few years ago to 2000 or 3000 variables today. These advances have motivated new applications of the model which,
in turn, have created the need to solve even larger problems. In response to this need, we introduce several new “one-
pass” heuristics for solving very large versions of this problem. Our computational experience on problems of up to
9000 variables indicates that these methods are both efficient and effective for very large problems. The significance of
problems of this size is that they not only open the door to solving a much wider array of real world problems, but also
that the standard linear mixed integer formulations of the nonlinear models involve over 40,000,000 variables and three
times that many constraints. Our approaches can be used as stand-alone solution methods, or they can serve as pro-
cedures for quickly generating high quality starting points for other, more sophisticated methods. © 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Unconstrained binary quadratic optimization; One-pass heuristics

1. Introduction where Q is an n x n matrix of constants and x is an
n-vector of binary variables. UQP is notable for its

The unconstrained quadratic program can be ability to represent a wide variety of important
written in the form: problems as well as its NP-hard difficulty. Appli-

cations have been reported in many different set-
tings including social psychology [14], financial
analysis [18,20], computer aided design [17], traffic
management [7,27], machine scheduling [1], cellu-
lar radio channel allocation [6], and molecular

i , conformation [25]. Moreover, many combinatorial
E-mail addresses: fglover@bus.olemiss.edu (F. Glover),

balidaee@bus.olemiss.edu (B. Alidaee), crego@bus.olemiss.edu optimization problems pertaining to graphs such

(C. Rego), gkochenberger@bus.olemiss.edu (G. Kochenber- as determining maximum cliques, maximum cuts,
ger). maximum vertex packing, minimum coverings,

UQP: minf(x) =xOx,

* Corresponding author.

0377-2217/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0377-2217(01)00209-0

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 273

maximum independent sets, and maximum inde-
pendent weighted sets are known to be capable of
being formulated by the UQP problem (see, for
example, the surveys of Pardalos and Rodgers [23],
and Pardalos and Xue [24]).

The application potential of UQP is even much
greater than this, however, due to reformulation
methods that enable certain constrained models to
be re-cast in the form of UQP. Hammer and Ru-
deanu [13] show that any quadratic (or linear)
objective in bounded integer variables and con-
strained by linear equations can be reformulated
as a UQP model. Such reformulations have been
recently highlighted by Kochenberger et al. [16],
where several classical models are examined, re-
formulated, and solved as unconstrained quadratic
programs. This reformulation approach was suc-
cessfully used to solve quadratic knapsack prob-
lem as recently reported by Glover et al. [10].
Considering such reformulation possibilities, the
UQP model has a vast range of applications.

Due to its computational challenge and appli-
cation potential, UQP has been the focus of a
considerable number of research studies in recent
years, including both exact and heuristic solution
approaches. Notable recent studies addressing
UQP are those by Williams [26], Pardalos and
Rodgers [23], Boros et al. [5], Chardaire and Sutter
[6], Glover et al. [9,11], Alkhamis et al. [2], Beasley
[4], Lodi et al. [19], Amini et al. [3], and Glover
et al. [8]. Other promising work is reported by
Katayama et al. [15] and Merz and Freisleben [21].
These various studies approach the problem by
branch and bound, decomposition, tabu search,
simulated annealing, and evolutionary methods
such as genetic algorithms and scatter search. Each
of these approaches exhibits some degree of suc-
cess. However, the exact methods degrade rapidly
with problem size, and have meaningful applica-
tion to general UQP problems with no more than
100 wvariables. For larger problems, heuristic
methods are required. To date, tabu search and the
evolutionary methods have proven to be successful
on problems of up to 3500 variables. For problems
approaching this size, however, the genetic algo-
rithm methods degrade substantially with density
of the Q matrix and both tabu search and scatter
search degrade in terms of solution time in order

to locate solutions of high quality. While current
methods have greatly expanded the size of prob-
lems that can be handled reasonably well, they are,
in their present state of development, inadequate
for the task of solving problem instances repre-
senting many important applications, which can
easily range three or more times larger than cur-
rent problem size limits.

This paper, in the interest of quickly finding
solutions to these larger problems, is concerned
with the study of “simple” one-pass heuristics for
large-scale 0-1 UQP problems. Such approaches
can serve as ‘‘stand-alone” methods or as ad-
vanced starting point procedures for more so-
phisticated (and time consuming) methods.

The rest of the paper is organized as follows. In
Section 2, we present the one-pass heuristics de-
signed for this study. To provide a basis for com-
parison as well as a rationale for our heuristics, we
begin with a discussion of DDT, the best known
and most promising one-pass heuristic in the cur-
rent literature. Then, in Section 3, we present our
computational experience. Our computational
work is divided into two parts. The first part pro-
vides a relative comparison of the various one-pass
methods by extensive testing on new test problems
ranging from 1000 to 9000 variables. The second
part shows how the best of the methods perform on
standard test problems where “best known” solu-
tions are available. Finally, Section 4 presents
conclusions and comments on future work.

2. DDT and alternative one-pass heuristics

We start from the basic formulation of the
unconstrained quadratic programming problem
(UQP), which as previously noted can be stated as

UQP: min xQx,

where Q is an n X n symmetric matrix and x is a
vector of n binary variables. Since for each binary
variable we have xf equal to x;, the problem also
can be written as

UQP: min z”: qix; + z”: qijXiXj,
=1 =1

i#

274 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

where g; is the ith element of the diagonal of Q and
g;; is the (i, j)th element of Q. For a binary variable
x; let X; be the complement of x;, i.e., X; =1 — x;.
Any element of the form x; or X; is called a literal.
Let 7; = u or uv for some literals # and v. Now, the
UQP also can be expressed as

UQP: min) ¢T;.
J

By an appropriate choice of literals (i.e., an ap-
propriate choice of variables to complement in
given terms), the coefficient c; of T; can be assumed
positive. This is called a posiform expression of
UQP [13,24]. There are typically many ways a
UQP can be transformed to an equivalent posiform
by substituting complements of some variables in
UQP. The notion of a posiform plays a key role in
the methods subsequently described.

Our discussion of one-pass heuristics can be put
in perspective by reviewing the well-known DDT
method of Boros et al. [5]. This algorithm, which is
given in Fig. 1, is applied to a posiform represen-
tation of UQP. We use the framework of Fig. 1 to
provide a point of departure for the development
of the alternative one-pass heuristics. However, the
computational results presented later for the DDT
method follow the suggestion of Boros et al. [5] by
using an implementation based on signed graphs.
This method employs a special graph-based ap-
proach having computational efficiencies. (The
reader is referred to [5] for the details.)

To illustrate, consider the following example
from [5].

Example 1. We seek to minimize the quadratic
function given by

Z =13 - S.X'] +9XQ +X3 + 12X4 —|—7X5 — 12.X']X2

+ 8X1X4 + 4)C2X3 — 10)62)C4 — 6X3X4 — SX4X5.

An equivalent posiform is

Z=-10 + 17)_61 + 12)(1.%2 + IOXZJ_C4 + 8X1X4 + 8)(4.%5
+ 7X5 + 6X3)7C4 + 5X3 + 4XZX3 + 4X4 + Xz.

A step-by-step procedure of DDT applied to such

posiform is as follows:

1. T:)_Cl, S:)_Cl, LC = {x1 = 1} and Z = —10+
13)_62 + 12X4 + 10)(2)_(4 + 8)64)_CS + 7x5 + 6X3)_C4 + 5)_C3+
4)62)63.

2. T :)?2, S =X \/)?2, LC = {X2 = 1} andZ:4+
SX4)775 +7X5 + 6X3X'4 + ZX4.765.

3. T=x4%s5, S=X% VX Vxsxs, LC=0 and Z=4+
8x4Xs + Txs + 6x3%4 + 2x4 + Xs.

4. T=x5, S=X VX VxsxsVxs, LC= {x4 =x;s
=0} and Z = 5+ 5x;.

5. T:.X3, S:)?l VX VxaXsVxsVxs, LC= {X3 :O} and
Z =5, with x = (1,1,0,0,0).

The DDT approach operates by implicitly index-

ing the terms of the posiform so that ¢; > ¢; for

i < j (though we only need to pick up a current

Max(c;) at each step). This procedure is reported

to perform well on a wide variety of problems and

to be particularly effective on problems of low

density [5,12].

elements of posiforms T

is taken over all elements T in S

Initialization: Input UQP in a posiform, call it Z, set S =0 and let L be the set of all

Devour: Find a term T from L with the largest ¢, let L= L\{T} and set S =S u{T}

Digest: Draw all the logical conclusions LC of the Boolean equation v7 =0, where v

Tidy-up: Substitute the consequence LC, drawn in the previous phase, into Z,

update LC, L and ¢; forall T in L. If LC is empty then return to Devour.

Output: Solve the Boolean equation vT =0 over all 7 in S, and output x. STOP.

Fig. 1. DDT Procedure.

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 275

2.1. Alternative one-pass heuristics

Taking DDT as a starting point, we create
several alternative heuristics based on assumptions
about the relative attractiveness of alternative
choices that go beyond ranking the 7; terms in
sequence. One set of variations additionally sug-
gests alternative criteria are available for evaluat-
ing the choices given by the ¢; values — or more
precisely, that different ways of generating posi-
form representations (each of which creates a dif-
ferent set of ¢; values) can be analyzed to yield new
values to replace the ¢; values, created as “hulls”
or “composites” of the ¢; values (or created by a
special assignment strategy).

First, we discuss variants that retain the DDT
policy of creating ¢; values by complementing only
the smaller index variable (or only the larger index
variable) in each complementation step, but in-
troducing assumptions for evaluating the terms
that are slightly different than those used in the
DDT procedure.

(A) The DDT approach often results in setting
several variables to 0 or 1 simultaneously, as can
be seen from Example 1. These assignments are
triggered by giving a value to a literal that ap-
peared in preceding pairs in the sequence. We
conjecture that a more effective set of assignments
will often result if only one of the variables in such
a collection is given its implied assignment, fol-
lowed immediately by updating the posiform rep-
resentation before creating other assignments.
While DDT performs very well on a wide variety
of problems, we will nonetheless see in Section 3
that our computational results confirm the con-
jecture for a variety of problem instances.

Different ways of evaluating the contributions
of the variables in the one-at-a-time assignments
discussed in (A) lead to alternative ways of im-
plementing the one-pass idea. Eight different
evaluation schemes, accompanied by various im-
plementation alternatives, are explained below.
We denote the first literal encountered in the or-
dered sequence by u and denote the negation of u
by u.

(A1) Conceive that earlier terms have stronger
“votes” for assignments. Consider the first term of
the form &v which precedes the occurrence of u in

the sequence. (That is, suppose 7; = u, and con-
sider the smallest i(< ;) for which there is a term of
the form 7; = uv.) Given that the vote for uv is
stronger than the vote for subsequent terms, and &
is negated by the subsequent occurrence of u, then
v inherits the strongest vote. Hence, the rule for
this case is to make the assignment based on the
literal v, i.e., by setting v = 1, and then updating
before proceeding.

(A2) Conceive that a vote for a paired term is a
“fuzzy” vote, which translates into a vote for each
component of the pair, where these component
votes are weaker than the vote for the pair itself.
Since the subsequent literal u is the only basis for
activating the consequence v (from the earlier term
uv), the literal itself is the most important assign-
ment, and hence u receives the strongest vote. Thus
the rule for this case is to make the assignment
based on the literal u. This reasoning has added
support described later.

(A3) To evaluate a given term 7; and its com-
ponents more effectively, consider the two cases
T; = u or T; = uv (for arbitrary u and v). In the first
case, for T; = u, let VoteStrength(u) = F(c;), where
F(c) is a monotonic increasing function of ¢. For
example, let F(c) =¢, or F(c) =c?, etc. (Thus
ordering by ¢ is the same as ordering by F(c).) In
the second case, for T; = uv, let VoteStrength(u) =
VoteStrength(v) = f X F(c;), where f is a fraction
<0.5. (The ““fuzzier” or “weaker” the vote for
each of u and v, the smaller the fraction.) Then
TotalVote(u) for each literal u is just the sum of all
the VoteStrength(u) values over the T; terms, and
NetVote(u) = TotalVote(u) — TotalVote(ir). These
values can be determined by a single pass of the
terms in the sequence, taking less work than ac-
tually ordering the 7;. (In a simple variant, the pass
is restricted to the subsequence that terminates
with the first term that is a literal. This takes a little
more effort than going through the sequence, since
it may be necessary to pick up several max terms
before reaching the literal.) Thus, the rule is to
make an assignment based on the literal u that
receives the maximum NetVote(u).

(B) There are additional reasons for diminish-
ing the emphasis on using paired terms for evalu-
ating the contributions of variables, suggesting it is
more appropriate to give a small value to the

276 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

“fraction” term above. Specifically, the structure
of the one-pass method as constituted so far as-
sures that a number of possible valid implications
can never be generated. To illustrate, consider the
following sequence that implies x; =1: (a) If
x; = 0, then x, = 0; (b) if x, = 0, then x3 = 0; (c) if
x3 =0, then x; = 1. In terms of pairs, this corre-
sponds to (a) X1x,; (b) Xx3; (c) X1 X3. But no terms 7;
have the form of (c), so the implication cannot be
created by reference to the type of posiform con-
sidered. On the other hand, the simple variation
that interchanges x; =0 and x; =1 in this se-
quence avoids the appearance of a double nega-
tion, but still will not be generated by the current
scheme. In this case the sequence is (a) X;x;; (b)
Xox3; (¢) x1X3. This can never be generated by a rule
that adopts the convention of always choosing the
smaller index variable or the larger index variable
to be the one to complement.

Since the structure of the method can mask
potentially valid implications from paired terms,
the relevance of inferences based on these terms
can appropriately be discounted. (In situations
where such inferences should be needed, the ap-
proach of (A3) above is applicable.) Following
this thread to the extreme, we consider a variant
that disregards paired terms entirely, and merely
picks the highest ranking literal at each step,
which is effectively the strategy (A2). In this case,
the process is accelerated, because the identifica-
tion of the max term is restricted to looking at
literals. If more than one literal has the same max
value ¢; = ¢*, then ties can be broken using (A3),
looking only at terms 7; such that ¢; > ¢*. (The
tie-breaking slows the method slightly, but our
later computational experience shows it can be
useful. In this case, no decision needs to be made
about the size of f'since f = 1 is equivalent to any
other positive value when the use is merely to
break ties.)

To account for the fact that the ¢; values are
arbitrary, and may be replaced by other values in
the 0-1 quadratic programming formulation, let
g; be the current updated coefficient of x;, and ¢;;
be the current updated coefficient of xx;. We
disregard the order, and so take g; =g¢;. Let
N ={l1,...,n} be the index set for all current x;
(those left to be assigned values), and let

N(i)={j €N —i:g; <0} Let J(i) be the subset
of N(i) given by J(i) ={j:xx;is replaced by
x:(1 —x;)}. Then we identify the value v; given
by: vi=q;+ > 95> Where ¢; =v; if x; is re-
tained as a literal and ¢; = —v; if x; is comple-
mented. Since v; can take a range of values
depending on the choice of J(i), leading to dif-
ferent choices for a “best” assignment of values
to variables, we consider the following variants:

(V1) Let vmax; = ¢g; and vmin; = ¢, +ZI€N([)
gi;. (If N(i) = 0, then cmax; = cmin; = ¢;.) Let ¢;
and ¢,; be the absolute values of vmax; and vmin,,
respectively, and let ¢; = Max(cy;, ¢y). Then ¢} is
be the highest possible value of ¢; over any method
for choosing the sets J(i). By a philosophy of
choosing the “best of the best”” we therefore select
i* = argmax{c; : i € N} to give the assignment
x; = 0 or 1. (This choice is based on looking at the
“outer hull” of the ¢; values.)

(V2) Let cmean; = {cy;, + ¢»}/2. This gives a
more moderate evaluation than (V1) by choosing
i = argmax{cmean,}.

(V3) A “best of the worst” philosophy is im-
plemented by defining cmean; =0 if vmax; > 0
and vmin; < 0, and otherwise defining cmin; =
Min(cy;, ¢3;). Then the choice is be to choose
i* = argmax{cmin, }.

(V4) A “‘pairwise max’ strategy consists of
going through the relevant pairs (i, j), in any order
as follows: (i) Start with v; = ¢; for all i. (ii)) As
each (i, j) (with g;; < 0) is encountered let v; = v; +
q;; or v; =v;+¢q; according to the choice that
creates the current largest value of Max(|v/|, |v;]).
Finally, let ¢; be determined as normally would be
done from this assignment, and choose i* =
argmax{c;}. (The order of examining the pairs
(i, j) can make a difference, but we do not examine
this effect.)

(V5) The same as (V4) but in step (ii) choose the
change that creates the current largest value of
Min(Ju;, 1))

The preceding options can be implemented very
quickly, by a single pass of the (i,j) values for
q; < 0. Options V4 and V5 additionally can be
used within strategies (Al) and (A3) above. All of
these approaches can use (A3) for tie-breaking. In
the following section we report implementations of
several variations of the above algorithms.

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 277

3. Computational experiments

Our computational testing consists of two
phases. Phase I provides a relative comparison of
the one-pass methods. Our intent here is to de-
termine if one or more of the methods stands out
in competition with the others. For this purpose,
we used a variety of randomly generated problems
of various sizes and densities. Phase II is then
carried out to see how the best of the one-pass
methods performed on existing problems from the
literature with known “best’ solutions. Details of
our testing are given below.

3.1. Phase I. Relative comparison of methods

To provide a test bed for judging the relative
merits of the one-pass methods, we randomly gen-
erated a new set of test problems using the generator
of Pardalos and Rodgers [23]. This generator is
widely used by researchers in the area. As expected,
the difficulty of the instances produced by this
generator increases rapidly with both size and den-
sity. Our experience with exact methods (in previous
work) applied to general instances produced by the
generator is that exact methods are limited to
problems with fewer than 150 variables. Heuristic
methods are required to address larger problems —
or even modest sized problems of high density.

The problems used in this study vary in density
from 15% to 85% and vary in size from 1000 to
9000 variables. The data range was [—20, 50] for
off diagonal elements and [—100, 100] for the di-
agonal elements of Q. For each combination of
size and density, three instances are generated and
solved, for a total of 168 problems in all. Assess-
ments of performance in terms of solution quality
and solution time are based on the average per-
formance over each set of three problems. For this
Phase I testing, we evaluated the following meth-
ods and variations:

e Alt: Algorithm Al with tie-breaking rule.
Aln: Al without tie-breaking;

A2t: Algorithm A2 with tie-breaking rule.

A2n: A2 without tie-breaking;

Vit: Algorithm Vi with tie-breaking rule, for
i=1,2,3,4,5.

e Vin: Vi without tie-breaking;

e DDT: DDT algorithm.

Before launching into the comparative testing,
some preliminary testing was undertaken to gen-
erally try out the methods and to resolve certain
open issues regarding methods A3, V4 and V5.
Initially, we investigated parameter settings for
method A3 with problems of 1000 variables. A3,
due to poor performance, was eliminated from
Phase I consideration as a stand-alone solution
method. However, a version of A3 is used as a
tie-breaking rule for the rest of algorithms. The
two key issues to be resolved in applying A3 are
the choice of the function F(c) and the fraction, f,
to be used in the voting procedure. We tested
several implementations of A3 by changing o in
F(c) = ¢”, and experimenting with the value of
the voting fraction over the interval [0,1]. Our
results indicated that neither the solution quality
nor solution time were significantly affected by
different values for « or the voting fraction. For
the purpose of serving as a tie-breaking rule in
the other heuristics, we used o =2, and f =1,
which performed reasonably well in our initial
testing.

Another preliminary issue concerns the choice
between the ‘“‘pairwise” and “most negative”
strategies for use in methods V4 and V5. To re-
solve this issue we did experiments on problems of
1000 variables with no tie-breaking rule. For both
V4 and V5 we found that the pairwise strategy
worked far better than the most negative element
strategy. As a result, all further testing was carried
out utilizing the pairwise strategy only.

After handling the issues noted above, the
comparative testing of the various methods was
undertaken. Early testing on small problems (1500
variables or fewer) indicated that all the “V”
methods, except V3n and V3t, were consistently
dominated in terms of solution quality by the re-
maining methods. (Additional testing on other
problems confirmed this dominance.). As a result,
these methods were dropped from further testing
and Phase I was continued using the six most
promising new methods, Alt, Aln, A2t, A2n, V3t,
V3n, along with the standard DDT method.

The results of the testing are summarized
graphically in Figs. 2-9. All codes were written in

278 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

Problems with 85% of Density

1.00 1
0.80 1

0.60 -

0.40 /
0.20 1
X

0.00

Ralative Suletins Cualitr

1000 1500 3000 5000 6000 7000 8000 9000

Problem Size

—— a2t —8—a2n v3t —%—v3n ddt

Fig. 2. Solution quality for 85% density problems.

Problems with 75% of Density

1.00
0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 H ==

0.00 T T T T T T ———

1000 1500 3000 5000 6000 7000 8000 9000

Problem Size

Relative Solution Quality

—— a2t —l—a2n —h— v3t —H—y3n —==— ddt

Fig. 3. Solution quality for 75% density problems.

F90 Fortran and run on a Cray C916. Although
this is a 10 processor computer, no explicit parallel
computing is used in our codes. The relative so-
lution quality produced by the one-pass methods
tested is presented in Figs. 2-8. We should men-
tion that the relative difference in the quality of the
algorithms for one problem is scaled according to
the relative percentage obtained on the overall
problems of the same density.

In each of the Figs. 2-8, the points plotted are
averages over the set of three random instances for
the size and density indicated. To facilitate making

Problems with 65% of Density

1.00 -
0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 T T T T T T T |
1000 1500 3000 5000 6000 7000 8000 9000

Problem Size

Relative Solution Quality

—&— a2t —l—a2n —A— v3t —¥—v3n —=— ddt

Fig. 4. Solution quality for 65% density problems.

Problems with 50% of Density

1.00 -
0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 . : T T T T T)
1000 1500 3000 5000 6000 7000 8000 9000

Problem Size

Relative Solution Quality

—— a2t —l—a2n —A—v3t ——v3n ddt

Fig. 5. Solution quality for 50% density problems.

comparisons, the best result for each problem class
is denoted as 1.0 and the performance of the other
methods is plotted relative to this benchmark of
1.0. The results for methods Alt and Aln are not
included in the graphs. Of the six new methods
tested in Phase I, neither Alt nor Aln produced
more than the 4th best results for any problem and
most often they came in 5th and 6th. To avoid
unnecessary clutter, we omitted the points for Alt
and Aln from the graphs.

Computation times for the methods are indi-
cated by the graph shown in Fig. 9, which gives

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 279

Problems with 35% of Density

1.00 +
0.90 -
0.80 -
0.70
0.60
0.50
0.40
0.30 -
0.20
0.10
0.00 T T T T T —8 |
1000 1500 3000 5000 6000 7000 8000 9000

Relative Solution Quality

Problem Size

—&— a2t —l—a2n —A— v3t —¥—v3n ddt

Fig. 6. Solution quality for 35% density problems.

Problems with 25% of Density

1.00 +
0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 T T T T T T T |
1000 1500 3000 5000 6000 7000 8000 9000

Relative Solution Quality

Problem Size

—— a2t —l—a2n —hA— V3t —H—y3n —==— ddt

Fig. 7. Solution quality for 25% density problems.

plots of averages taken over all densities. Corre-
sponding to the graphs of Figs. 2-8 showing rel-
ative solution quality, we constructed companion
graphs showing average computational times for
the methods on the respective problems. Without
exception, these companion graphs exhibited the
same pattern (shapes) shown in Fig. 9, differing
from each other only in scale. Thus, in the interest
of brevity, we chose to compress all computational
times into a single figure representing the general
shapes and to note that the scales for the individ-
ual charts are [0, 140] for problems of densities of

Problems with 15% of Density

1.00 -
0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 T T T T T T T |
1000 1500 3000 5000 6000 7000 8000 9000

Relative Solution Quality

Problem Size

—— a2t —l—a2n —h— v3t —H—y3n —=— ddt

Fig. 8. Solution quality for 15% density problems.

Average Over All Densities

250
200
150
100 -

50 -

Computation Times (seconds)

1000 1500 3000 5000 6000 7000 8000 9000

Problem Size

—— a2t —l—a2n —A—v3t —¥—v3n

Fig. 9. Average CPU times over all densities.

65%, 75% and 85%, and [0,200], [0,250], [0,300],
and [0, 450], respectively, for problems of densities
50%, 35%, 25%, and 15%.

3.1.1. Analysis of Phase I results

The results in Figs. 2-8 indicate that no single
method dominates in all cases. However, it is clear
that methods A2t and A2n performed consistently
and considerably better than the other methods
along both dimensions of solution quality and
computational time for the problems considered in

280 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

Phase I. The tie-breaking rule appears to improve
the performance of method A2 for certain prob-
lems but has little positive effect on the solution
quality of method V3. Perhaps the most noticeable
result in the tables is the complimentary nature of
methods A2t and A2n. Over the 56 “best results”
reported in Figs. 2-8, 52 of them are given by ei-
ther A2t or A2n. The remaining four best results
were given by V3n.

Figs. 2-8 contain results for the DDT method
for problem sizes up to 3000 variables only. Since
the original DDT code was not available for our
testing, we used our own DDT implementation
which is well tested and proven to correctly exe-
cute the method in terms of solution quality.
However, we suspect that a more efficient imple-
mentation can be made as our computation times
for DDT were large even for small N. For the
current version (which is based on signed graphs),
the DDT running times were 82.3, 277.6, and
2205.4 seconds on average over all densities for
problems of sizes 1000, 2000 and 3000, respectively
(more than on order of magnitude slower than the
next slowest method, V3). DDT was not included
in the testing on problems larger than 3000 vari-
ables due to these long run times.

Quite aside from the solution times, we were
surprised at the solution quality produced by DDT
for the problems tested in Phase I where it gener-
ally lagged behind the other methods tested. Our
previous experience with our version of DDT led
us to expect that DDT would do much better. As
we will see in the Phase II results that follow, there
are many problems for which DDT shows ex-
traordinary performance, often yielding results
superior to the methods that outperformed it on
the Phase I problems. Nonetheless, we take the
results reported here in Phase I as strong support
for our earlier conjecture that variations that fix
variables one at a time, rather than undertaking
(as in DDT) to make multiple assignments on a
single step, can yield improved performance for
many problems.

The relationship between computation time and
problem size and density varies dramatically de-
pending on the method. For method V3, compu-
tation time grows rapidly with problem size as
shown in Fig. 9. However, computation time for a

given problem size decreases by roughly a factor of
one third as density goes from 15% to 85%.
Method A2 behaves quite differently. Computa-
tion times for A2t increase more moderately than
that of method V3 as problem size grows (see Fig.
9). For example, A2t and V3t solve 1000 variable
problems in roughly 0.3 and 1.5 seconds, respec-
tively, while taking 74 and 160 seconds, respec-
tively, for 9000 variable problems (average values
across all densities).

For a given problem size, computation times
for A2t increase with density, going up by roughly
a factor of 2 as density goes from 15% to 85%.
Method A2n has the smallest computation times
of all the methods. As shown in the Table 9,
computation time increases very slightly with
problem size. For example, A2n solves 1000 vari-
able problems in roughly 0.04 seconds and 9000
variable problems in 2.7 seconds (averages over all
densities). Moreover, for a given problem size,
computation times are essentially constant as
density goes from 15% to 85%. (Subsequent test-
ing, not shown in the tables, disclosed that A2n
generates solutions for 85% dense problems with
12,000 variables in less that 17 seconds.)

Computation times for Alt and Aln were
slightly higher (a few percent) than those for A2t
and A2n, respectively. Generally, they exhibited
the same pattern with size and density as for A2t
and A2n, respectively. As already noted, however,
Alt and Aln lagged behind the other four new
methods on the Phase I problems in terms of so-
lutions quality.

Based on the full range of computational test-
ing conducted in Phase I, we conclude that both
methods A2 and V3 are effective for the problems
considered here. Considering both solution quality
and computation time, A2n gave the overall best
performance, followed closely by A2t and V3n and
V3t in that order.

3.2. Phase II. Comparing one-pass performance
with best-known solutions

Phase II of our testing undertakes to determine
how the methods compare in terms of solution
quality on problems from the literature for which

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 281

known best solutions are available. For this pur-
pose we took what appears to be the best of the
methods from Phase I, A2n, A2t, V3n and V3t,
and applied these four one-pass methods along
with DDT to 98 problems from the open litera-
ture. DDT was included here due to the favorable
performance experience we previously had with it
on other problems and the fact that it is prominent
in the literature.

Table 1 gives references for the problems used.
These problems vary considerably in size, density,
and in the characteristics of their Q matrices.

The results obtained from solving these test
problems are shown in Tables 2-13. Each table is
constructed in the following manner. The first
column identifies the problem, followed by infor-
mation on size, density and best-known solution.
The last five columns give the results for DDT,
A2n, A2t, V3n, and V3t, respectively, as a per-
centage of the best-known solution. For example,
Table 2, row 1 shows that problem B1 has 20
variables, is 100% dense, and has a best-known
solution value of 133. DDT gave a solution value
that is 73.7% of 133 (or 98) and A2n gave a so-
lution value that is 100% of the best-known result
(133), while A2t, V3n and V3t gave results that
were 78.9%, 10.5%, and 10.5%, respectively, of the
best-known result.

3.2.1. Analysis of phase II results

Tables 2-13 indicate that the five one-pass
methods tested in Phase II, overall, did well on the
problems tested here. DDT in particular, which
did not fare well in our Phase I testing, did ex-
traordinarily well in Phase II. Nonetheless, as we
saw in Phase I, no one method dominates in all
cases.

Over the 98 problems solved in Phase II, the
objective function values obtained by DDT aver-
aged 91.6% of the best-known objective function
values. For the 60 “Beasley” problems (Tables 9-
13), DDT objective function values averaged
98.9% of the best-known values and matched the
best-known values on nine of the problems. On the
first 38 test problems (Tables 2-7), DDT results
averaged 80% of the best-known values. Relative
to the five heuristics tested, DDT gave the best
result for 72 of the 98 problems considered.

For the entire problem set (98 problems), A2n
objective function values averaged 82% of the best-
known values, dropping slightly to 80% for the 60
Beasley problems. For the first 38 problems
(Tables 2-7), A2n values averaged 85% of the best-
known values, matching the best-known values 6
times. A2t, the A2 version with tie-breaking, gave
an average result of 79.8% of the best-known so-
lution overall, 80.1% for Beasley’s problems, and

Table 1

Characteristics of test problems
Problem type Source Main diagonal Off diagonal
B Pardalos and Rodgers [22]* [—63,0] (1,100]
F1 Glover et al. [9]° [-75,+75] [—50,+50]
F2 Kochenberger et al. [16]° [-99,0] [0, +50]
Gl Glover et al. [9]° [—75,475] [—50, +50]
G2 Kochenberger et al. [16]° [-99,0] [0, 4+-50]
MYCIEL Michael Trick® Negative Non-negative
QUEEN Michael Trick® Negative Non-negative
50 OR-Library? [—100, +100] [—100,+100]
100 OR-Library? [—100,+100] [—100, +100]
250 OR-Library? [—100, +100] [—100,+100]
500 OR-Library? [—100, +100] (100, 4+100]
1000 OR-Library? [—100, +100] [—100,+100]
2500 OR-Library? (100, +100] [—100, 4+100]

#Generator QO1SUBS available at http://mcs.anl.gov/home/otc/Server.

®Problems available at Hearin Center http:/hces.bus.olemiss.edu.

¢ Graph coloring problems reformulated as xOx. Problems available at http://mat.gsia.cmu.edu/COLOR/instances.html.

9Problems available OR-Library http://mscmga.ms.ic.ac.uk/info.html.

282 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287
Table 2
“B” problems
Problem N Density Best known Percent of best known
(0) DDT A2n A2t Vin V3t
Bl 20 100 133 73.7 100.0 78.9 10.5 10.5
B2 30 100 121 95.0 75.2 86.8 5.0 5.0
B3 40 100 118 47.5 86.4 80.5 0.0 0.0
B4 50 100 129 66.7 78.3 78.3 0.0 0.0
B5 60 100 150 70.0 100.0 60.0 0.7 0.7
B6 70 100 146 43.2 77.4 72.6 2.7 2.7
B7 80 100 160 56.3 100.0 100.0 0.6 0.6
B8 90 100 145 61.4 80.7 80.7 0.0 0.0
B9 100 100 137 70.1 92.7 75.9 0.0 0.0
B10 125 100 154 65.6 78.6 78.6 0.0 0.0
Table 3
“F1” problems
Problem N Density Best known Percent of best known
(o) DDT A2n A2t V3n V3t
Fla 500 10 61,194 99.2 77.9 76.9 92.9 92.8
Fl1b 500 25 100,161 99.3 80.4 80.8 92.7 90.4
Flc 500 50 138,035 98.7 78.6 79.7 92.7 92.1
F1d 500 75 172,771 98.7 82.0 83.9 94.4 94.4
Fle 500 100 190,507 98.9 87.8 77.5 95.4 94.2
Table 4
“F2” problems
Problem N Density Best known Percent of best known
(%) DDT A2n A2t Vin V3t
F2a 500 10 3955 79.0 87.5 84.0 80.0 80.0
F2b 500 25 1998 81.3 92.4 92.4 73.4 89.8
F2c 500 50 1086 78.7 85.9 85.9 72.5 82.6
F2d 500 75 685 80.3 89.6 73.7 66.3 73.6
F2e 500 100 418 68.4 84.4 76.8 76.8 76.8
Table 5
“G1” problems
Problem N Density Best known Percent of best known
(%) DDT A2n A2t Vin V3t
Gla 1000 10 131,456 98.6 75.8 77.7 91.7 88.0
Glb 1000 30 192,565 96.4 74.2 67.0 79.0 84.4
Glc 1000 50 242,367 96.4 79.2 54.8 69.5 89.1
Gld 1000 70 253,590 96.0 68.0 60.9 75.8 86.8
Gle 1000 100 274,375 96.2 70.1 68.0 77.2 83.7

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

Table 6
“G2” problems

283

Problem N Density Best known Percent of best known
(%) DDT A2n A2t V3n V3t
G2a 1000 10 4929 81.5 92.8 85.8 84.2 77.4
G2b 1000 30 2050 73.8 85.5 81.9 77.1 771
G2c 1000 50 1241 66.6 80.3 88.8 77.2 83.9
G2d 1000 70 843 67.1 85.5 80.4 74.0 76.6
G2e 1000 100 452 64.8 88.1 86.9 78.5 73.9
Table 7
Graph coloring problems formulated as xQOx
Problem N Density Best known Percent of best known
(%) DDT A2n A2t Vin V3t
MYCIEL3 96 13.0 59 93.2 100.0 96.6 20.3 100.0
MYCIEL4 240 7.3 120 95.8 100.0 97.5 11.7 100.0
MYCIEL5 480 4.5 239 92.1 100.0 98.7 5.9 100.0
QUEENS 125 14.2 125 76.0 80.0 60.0 4.0 76.0
QUEENG6 252 9.2 180 83.3 83.3 72.2 2.8 83.3
QUEEN?7 343 7.7 245 73.5 79.6 67.3 2.0 69.4
QUEENS 640 5.1 320 79.7 93.8 81.3 1.6 84.4
QUEEN9 810 4.5 405 76.5 84.0 75.3 1.2 75.3
Table 8
“50” problems
Problem N Density Best known Percent of best known
(%) DDT A2n A2t V3n V3t
50.01 50 10 2098 90.8 74.9 79.1 325 32.5
50.02 50 10 3702 100.0 60.2 60.2 0.0 0.0
50.03 50 10 4626 100.0 85.2 85.2 76.0 76.0
50.04 50 10 3544 97.9 86.9 86.9 81.3 81.3
50.05 50 10 4012 99.5 76.7 76.7 96.8 96.8
50.06 50 10 3693 100.0 71.1 71.1 91.3 91.3
50.07 50 10 4520 100.0 75.5 75.5 94.0 94.0
50.08 50 10 4216 100.0 76.5 76.5 86.9 79.5
50.09 50 10 3780 99.2 54.6 54.6 75.6 75.6
50.1 50 10 3507 99.7 78.0 78.0 92.7 92.7

79.34% on the first 38 problems. Nowhere in the 98
problems did A2t match the best-known result.
Compared to the other four heuristics, A2n gave
the best result on 26 of the 98 problems tested,
while A2t gave the best result for only one problem
instance.

V3n, over the entire problem set, gave an av-
erage performance result of 71.6% of the best-

known results. This average was brought down
considerably by the poor performance on the
problems of Tables 2 and 7. Performance on the
first 38 problems, due the problems of Tables 2
and 7, was only 44.5% of the best-known results.
For the 60 Beasley problems, V3n gave an average
88.8% of best-known values. Nowhere in the entire
problem set did V3n match the best-known result.

284 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

Table 9
“100” problems
Problem N Density Best known Percent of best known
(0) DDT A2n A2t Vin V3t
100.01 100 10 7970 97.7 78.8 78.4 85.3 85.3
100.02 100 10 11,036 100.0 81.5 81.5 93.8 93.8
100.03 100 10 12,723 99.6 81.2 90.9 99.5 99.5
100.04 100 10 10,368 100.0 88.5 86.4 92.4 92.4
100.05 100 10 9083 100.0 76.8 76.8 90.9 90.9
100.06 100 10 10,210 97.3 77.8 77.8 83.6 83.6
100.07 100 10 10,125 99.8 80.0 80.0 85.9 66.2
100.08 100 10 11,435 100.0 83.2 83.2 93.0 93.0
100.09 100 10 11,455 99.4 70.7 70.7 82.5 82.6
100.1 100 10 12,656 98.8 71.5 71.5 96.1 96.8
Table 10
250" problems
Problem N Density Best known Percent of best known
(0) DDT A2n A2t Vin V3t
250.01 250 10 45,607 99.3 90.2 90.5 93.0 93.1
250.02 250 10 44810 94.2 82.5 80.5 92.8 88.3
250.03 250 10 49,037 99.9 86.4 86.4 97.2 97.2
250.04 250 10 41,274 99.5 90.0 89.9 89.2 94.9
250.05 250 10 47,961 99.7 83.4 84.2 92.7 96.3
250.06 250 10 41,014 98.8 78.5 78.5 89.8 88.7
250.07 250 10 46,757 99.3 71.3 71.3 92.4 92.4
250.08 250 10 35,726 98.1 81.6 81.6 92.7 929
250.09 250 10 48,916 99.0 80.3 79.8 97.5 97.5
250.1 250 10 40,442 98.6 77.4 78.5 9.5 93.4
Table 11
“500” problems
Problem N Density Best known Percent of best known
() DDT A2n A2t Vin V3t
500.01 500 10 116,586 98.5 81.4 772 86.7 91.1
500.02 500 10 128,223 99.4 74.8 79.9 94.3 91.2
500.03 500 10 130,812 99.4 83.6 78.3 89.7 87.3
500.04 500 10 130,097 99.4 77.2 76.3 93.3 93.4
500.05 500 10 125,487 99.0 79.6 77.3 92.7 94.0
500.06 500 10 121,719 99.2 83.3 83.3 95.1 12.6
500.07 500 10 122,201 98.2 79.8 79.2 93.6 93.6
500.08 500 10 123,559 99.4 80.4 80.0 91.4 90.8
500.09 500 10 120,798 99.0 79.0 82.0 93.7 93.7
500.1 500 10 130,619 99.3 84.9 84.7 93.6 93.4
V3t, the V3 version with tie-breaking, gave an V3t matched the best-known result on three
average result of 78% overall, 87.5% for the Be- problem instances. Overall, the V3 methods ex-

asley problems, and 63% on the first 38 problems. hibited much more volatility in performance than

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 285
Table 12
“1000” problems
Problem N Density Best known Percent of best known
(0) DDT A2n A2t Vin V3t
1000.01 1000 10 371,438 99.2 79.4 80.4 91.0 91.8
1000.02 1000 10 354,932 99.0 84.0 84.0 93.1 93.1
1000.03 1000 10 371,226 99.5 85.7 85.5 95.3 95.1
1000.04 1000 10 370,560 99.0 83.6 83.5 94.6 94.4
1000.05 1000 10 352,736 98.1 82.9 81.9 93.0 92.9
1000.06 1000 10 359,452 99.2 82.9 83.4 93.9 95.7
1000.07 1000 10 370,999 99.3 78.6 78.3 65.2 91.8
1000.08 1000 10 351,836 98.7 81.8 84.3 93.8 93.8
1000.09 1000 10 348,732 99.0 83.1 80.9 91.9 91.9
1000.1 1000 10 351,415 99.1 83.4 79.9 93.1 93.1
Table 13
©2500” problems
Problem N Density Best known Percent of best known
() DDT A2n A2t Vin V3t
2500.01 2500 10 1,515,011 99.1 81.0 78.3 93.7 93.1
2500.02 2500 10 1,468,850 99.1 81.5 81.5 94.7 94.3
2500.03 2500 10 1,413,083 99.1 79.5 83.9 93.9 94.6
2500.04 2500 10 1,506,943 99.4 82.3 82.6 92.6 94.2
2500.05 2500 10 1,491,796 99.1 82.4 82.1 94.0 94.1
2500.06 2500 10 1,468,427 99.4 79.5 81.0 94.3 93.5
2500.07 2500 10 1,478,654 99.1 82.3 81.1 94.7 93.2
2500.08 2500 10 1,484,199 99.3 82.6 83.0 94.4 93.0
2500.09 2500 10 1,482,306 99.1 80.4 79.7 92.5 92.1
2500.1 2500 10 1,482,354 99.3 83.8 83.1 94.8 93.8

either DDT or the A2 methods. Moreover, while
the V3 methods were competitive on many prob-
lems, they never gave a result better than the other
three methods (DDT, A2n or A2t) for any of the
98 test problems. V3n was not able to match the
best performance of the other methods on any of
the 98 problems and V3t achieved this for only
four of the 98 problems (all from Table 7]. Note
that method A2n also had these best-known re-
sults for these same four problems. Over the entire
problem set, neither of the V3 methods produced
an objective function result better than that of the
other three methods for any particular problem.
Generally speaking, the best solution obtained
for each of the 98 problems was obtained by either
DDT or A2n. The only exception to this was
problem G2c (Table 6), where the best result was
given by A2t. Overall, DDT outperformed A2n on

the Beasley problems and the problems of Tables
3 and 5 while A2n outperformed DDT on the
problems of Tables 2, 4, 6, and 7. It is interesting
to note that the better of the two results for each
problem of Phase II (i.e., from either DDT or
A2n) was 95.91% of the best-known solution over
the entire 98 problems. Seldom (only once) did
they tie for best result, instead exhibiting a com-
plementarity having one method dominate for
certain problems and the other method for other
problems. This complementary behavior is high-
lighted with respect to best-known solutions with
DDT matching best-known solutions on nine of
the Beasley problems and A2n matching best-
known solutions on six of the other problems.
DDT’s strong performance on the Beasley
problems is consistent with our expectation (based
on earlier testing prior to this study) that the

286 F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287

method performs very well on sparse problems
and on problems with unrestricted ¢; values
(characteristics exhibited by Beasley’s problems).
As shown in Tables 2, 4, 6 and 7, A2n seems to do
well on problems with negative main diagonal el-
ements and nonnegative off diagonal elements, a
structure that shows up in many applications.
Nonetheless, there are many exceptions that sug-
gest the relationship between structure and meth-
od performance is more complicated. For
example, all 168 problems of Phase I were gener-
ated with unrestricted g;; values and yet DDT,
even on the sparse instances, did much worse than
A2n (and other methods) on these problems.
While the computational results presented in this
paper firmly establish the effectiveness of one-pass
methods as a class of heuristics, there is much left
to learn about which method is best for a given
(new) problem instance.

4. Summary and conclusion

Our study introduces and tests several one-pass
heuristics for large-scale instances of the uncon-
strained binary quadratic programming problem
(UQP). Rigorous computational experiments were
conducted on problems with up to 9000 variables,
which translate into linear mixed integer pro-
gramming problems containing over 40,000,000
variables. This is the first study to report extensive
experience with one-pass methods on such a large
and diverse set of problems, whose sizes range
significantly beyond those previously examined in
the literature.

Our computational work discloses that several
of the one-pass methods are very effective for
solving UQP. While no single method dominated
in every instance, five methods, A2n, A2t, V3n,
V3t, and DDT stand out as being particularly ef-
fective for certain problem instances. Considering
both solution quality and solution time, method
A2 (A2n in particular) gave the best overall per-
formance in our study. DDT, while taking con-
siderably longer than A2n, produced very high
quality solutions on problems up to 2500 variables
and clearly demonstrated its effectiveness, partic-
ularly on sparse problems.

Our on-going research centers around new
applications that involve UQP problems even
larger than those considered here. To accommo-
date such applications we are testing new data
structures and procedural enhancements designed
to further improve computational times. The
success reported in this paper on the rapid exe-
cution and high quality solution characteristics of
one-pass methods motivates us to examine ‘“mas-
ter methods” that employ several methods in
concert. Specifically, we are testing the effective
bundling of the best one-pass heuristics into a
suite of solvers that operate in a multi-pass fash-
ion to rapidly produce several candidate solutions
to a given problem, selecting the best of these as
the final outcome. The various solutions generated
can also serve as starting points for more ad-
vanced methods. We hope to report on these and
related issues in future papers.

Acknowledgements

This research was supported in part by ONR
grants # N000140010598 and N000140010769.

References

[1] B. Alidaee, G. Kochenberger, A. Ahmadian, 0-1 Qua-
dratic programming approach for the optimal solution of
two scheduling problems, International Journal of Systems
Science 25 (1994) 401-408.

[2] T.M. Alkhamis, M. Hasan, M.A. Ahmed, Simulated
annealing for the unconstrained binary quadratic pseudo-
boolean function, European Journal of Operational Re-
search 108 (1998) 641-652.

[3] M. Amini, B. Alidaee, G. Kochenberger, A scatter search
approach to unconstrained quadratic binary programs, in:
D. Corne, M. Dorigo, F. Glover (Eds.), New Methods in
Optimization, McGraw-Hill, New york, 1999 (to appear).

[4] J.E. Beasley, Heuristic algorithms for the unconstrained
binary quadratic programming problem, Working Paper,
Imperial College, 1999.

[5] E. Boros, P. Hammer, X. Sun, The DDT method for
quadratic 0—-1 minimization, RUTCOR Research Center,
RRR 39-89, 1989.

[6] P. Chartaire, A. Sutter, A decomposition method for
quadratic 0-1 programming, Management Science 41 (4)
(1994) 704-712.

F. Glover et al. | European Journal of Operational Research 137 (2002) 272-287 287

[71 G. Gallo, P. Hammer, B. Simeone, Quadratic knapsack
problems, Mathematical Programming 12 (1980) 132-149.

[8] F. Glover, M. Amini, G. Kochenberger, B. Alidace, A new
evolutionary metaheuristic for the unconstrained binary
quadratic programming: A case study of the scatter search,
School of Business, University of Colorado, Boulder,
September 1999.

[9] F. Glover, G. Kochenberger, B. Alidace, M.M. Amini,
Tabu with search critical event memory: An enhanced
application for binary quadratic programs, in: S. Voss,
S. Martello, I. Osman, C. Roucairol (Eds.), Meta-
heuristics: Advances and Trends in Local Search Para-
digms for Optimization, Kluwer Academic Publishers,
Boston, 1999.

[10] F. Glover, G. Kochenberger, B. Alidace, M. Amini,
Unconstrained quadratic binary program approach to
quadratic Knapsack problems, Working paper, Hearin
Center for Enterprise Science, University of Mississippi,
1999.

[11] F. Glover, G. Kochenberger, B. Alidaece, Adaptive mem-
ory tabu search for binary quadratic programs, Manage-
ment Science 44 (3) (1998) 336-345.

[12] P. Hammer, E. Boros, X. Sun, On quadratic unconstrained
binary optimization, INFORMS National Meeting, Seat-
tle, October, 1998.

[13] P. Hammer, S. Rudeanu, Boolean Methods in Operations
Research, Springer, New York, 1968.

[14] F. Harary, On the notion of balanced of a signed graph,
Michigan Mathematical Journal 2 (1953/54) 143-146.

[15] K. Katayama, M. Tani, H. Narihisa, Solving large binary
quadratic programming problems by an effective genetic
local search algorithm, in: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’00),
Morgan Kaufmann, 2000 (to appear).

[16] G. Kochenberger, B. Alidace, M. Amini, Applications of
the unconstrained quadratic binary program, Working
Paper, University of Colorado, 1998.

[17] J. Krarup, A. Pruzan, Computer aided layout design,
Mathematical Programming Study 9 (1978) 75-94.

[18] D.J. Laughunn, Quadratic binary programming, Opera-
tions Research 14 (1970) 454-461.

[19] A. Lodi, K. Allemand, T.M. Liebling, An evolutionary
heuristic for quadratic 0-1 programming, Technical Re-
port OR-97-12, D.E.LS., University of Bologna, 1997.

[20] R.D. McBride, J.S. Yormack, An implicit enumeration
algorithm for quadratic integer programming, Manage-
ment Science 26 (1980) 282-296.

[21] P. Merz, B. Freisleben, Genetic algorithms for binary
quadratic programming, in: Proceedings of the 1999
International Genetic and Evolutionary Computation
Conferecne (GECCO’99), Morgan Kaufmann, Los Altos,
CA, 1999, pp. 417-424.

[22] P. Pardalos, G.P. Rodgers, Computational aspects of a
branch and bound algorithm for quadratic 0-1 program-
ming, Computing 45 (1990) 131-144.

[23] P. Pardalos, G.P. Rodgers, A branch and bound algorithm
for maximum clique problem, Computer & OR 19 (1992)
363-375.

[24] P. Pardalos, J. Xue, The maximum clique problem, The
Journal of Global Optimization 4 (1994) 301-328.

[25] A.T. Phillips, J.B. Rosen, A quadratic assignment formu-
lation of the molecular conformation problem, Journal of
Global Optimization 4 (1994) 229-241.

[26] A.C. Willaims, Quadratic 01 programming using the roof
duality with computational results, Rutcor Research Re-
port 8-85, Rutgers University, New Brunswick, NJ, 1985.

[27] C. Witsgall, Mathematical methods of site selection for
electronic system (EMS), NBS Internal Report, 1975.

