Multilevel Cooperative Search: Application to the
Circuit/Hypergraph Partitioning Problem

Min Ouyang
Department of CS&E, University of Nebraska-Lincoln, mouyang@cse.unl.edu

Michel Toulouse
Department of Computer Science, University of Manitoba, toulouse@cs.umanitoba.ca

Krishnaiyan Thulasiraman
School of Computer Science, University of Oklahoma, thulasi@cs.ou.edu

Fred Glover
Hearin Center for Entreprise Science, University of Mississippi, fglover@bus.olemiss.edu

Jitender S. Deogun
Department of CS&E, University of Nebraska-Lincoln, deogun@cse.unl.edu

Abstract In this paper, we present an adaptation for hypergraph partitioning of the multilevel
cooperative search paradigm first introduced by Toulouse, Thulasiraman, and Glover [13]. We also
introduce a new approach for coarsening hypergraphs, and describe a parallel implementation of
this algorithm on the SGI 02000 system. Experiments on ISPD98 benchmark suite of circuits
show, for 4-way and 8-way partitioning, a reduction of 3% to 15% on hyperedge-cut compared to
hMETIS. Bisections of hypergraphs based on our algorithm also outperforms hMETIS, although
more modestly.

Published in Proceedings of the International Symposium on Physical Design,San Diego, CA, pp.
192-198, ACM Press, 2000.

1. INTRODUCTION

Hypergraph partitioning is an important and well-studied
research area in VLSI CAD. Several classes of heuristics
have been proposed to address this problem [?]. Recently,
the multilevel paradigm has been applied to the hypergraph
partitioning problem [8]. This approach has established it-
self as the current state-of-the-art technique both for the
computational time and for the quality of the hyperedge-
cuts.

In [13], a new parallel cooperative search algorithm for
graph partitioning is proposed where the coarsening phase
and the projection operator of multilevel algorithms are used.
Cooperative search is a paradigm commonly used to de-
sign mowve-based search heuristics for parallel and distributed
computer systems [3; 6; 12]. Parallel algorithms based on
this paradigm rank among the best approaches for some
of the most difficult constraint satisfaction problems and
global optimization problems, but these algorithms tend to
be unstable. The innovation of [13] is to address this issue
by adapting the coarsening phase of multilevel algorithms
to cooperative algorithms. This provides a general frame-
work for designing cooperative algorithms which are more
predictable. Applied to a suite of well known graph parti-
tioning problems, this new algorithm has been able to obtain
new best edge cuts for all problems tested.

This paper introduces the design of a cooperative mul-
tilevel hypergraph partitioning algorithm (CoMHP). This
design is based on a new approach for coarsening hyper-
graphs which helps to obtain better hyperedge-cuts as well
as to improve the run time of the algorithm. This coarsening
approach allows for asynchronous parallel computation, but
the hypergraphs are not necessarily related level by level as
in traditional multilevel algorithms.

The rest of the paper is structured as follows. Section 2
provides a brief introduction to cooperative search. Section
3 addresses a few key issues of multilevel algorithms. Section
4 describes the design of the cooperative multilevel hyper-
graph partitioning algorithm. Section 5 reports the results
of the tests conducted on the ISPD98 benchmark suite of
circuits. Finally Section 6 concludes with some suggestions
for future work.

2. COOPERATIVE SEARCH

Cooperative search uses move-based heuristics. These heuris-
tics are iterative methods where a solution xz(t) is obtained
by a simple perturbation of the solution from the previ-
ous iteration t — 1. The sequence of solutions z(0),z(1),-
., z(last_iteration) visited by move-based heuristics is of-
ten pictured as a walk in the solution space. Kernighan-Lin
(KL) heuristic [10] as well as meta-heuristics such as tabu
search and simulated annealing use move-based heuristics.
The design strategy of cooperative algorithms is bottom-
up. A set of different sequential move-based heuristics is
first selected. At run time, each heuristic is a process (a
walker) exploring the solution space of the same problem
instance. The next step consists of defining a cooperation
scheme among the search processes. The cooperation scheme
establishes: 1) which information about the search performed
by a process could be relevant to other search processes, 2)
when this information should be shared and 3) which pro-
cesses should be involved in each exchange of information.
Let f(z;) and f(x;) be respectively the cost of the best
partitionings found by process p; and p;. A cooperation

scheme could be based on an exchange of partitioning tak-
ing place asynchronously between processes p; and p; when
|f(z:) — f(z;)| is greater than some threshold Ep. Assume
f(z;) < f(zi) so that the best partitioning of p; is not as
good as for process p;. Information is exchanged by p; send-
ing its partitioning xz; to p;. Then p; moves from z(t) to z;
which becomes its current solution at iteration ¢t + 1. We
call such a move a cooperation-based transition to distin-
guish it from move-based transition where transitions from
z(t) to z(t + 1) are based on the local move-based heuris-
tic. Once a cooperation-based transition is completed, each
process resumes its walk in the solution space according to
its move-based heuristic.

Cooperation-based transitions interact in a very complex
manner with the behavior of move-based heuristics. Once
a walker p; resumes its search from a partitioning provided
by a cooperation-based transition, it does so according to a
partitioning that p; may have never reached if it had per-
formed uniquely move-based transitions. As the number
of cooperation-based transitions increases, it comes a point
where the behavior of the walkers can no longer be related
to their local move-based heuristic. In this case the com-
putation performed by the cooperative algorithm becomes
“emergent”. Emergent computation [1] is the collective com-
putation of a system of interacting computational entities.
For example, attractor based artificial neural networks such
as the Hopfield network [7] get computation out of interac-
tions among very simple computing entities. Similarly, after
some point, cooperation-based transitions take precedence
on move-based transitions in controlling the behavior of the
cooperative algorithms. But search processes are far more
complex computing entities than the nonlinear functions of
artificial neural networks. Therefore the emergent behavior
of cooperative algorithms is highly unstable. To make the
performances of cooperative algorithms more reliable, one
needs to study the impact of cooperation-based transitions
on move-based heuristics in a controlled environment. The
levels of multilevel algorithms provide a framework to design
more tractable cooperation schemes.

3. MULTILEVEL ALGORITHMS: ISSUES

Let Ho = (Vo, Eo) be the hypergraph reduction of a given
circuit instance such that Vp is a set of n vertices and Ej is
a set of m hyperedges where each hyperedge is a subset of
Vo. The k-way hypergraph partitioning is an optimization
problem where Vj is partitioned into k subsets s1,s2,... Sk
S0 as to minimize a cost function f(x) subject to a balance
criterion L‘;—Okl < |si] < % for some constant ¢; > 1.0.
The vector z € Xo C I™ is a partitioning where z[i] = s;,
the subset to which vertex v; is mapped in partitioning z.
The set Xy is the solution space, i.e., the set of possible k-
way partitionings that exist for hypergraph Hp. The cost
function f(z) is given by f(z) = Y-, w(e;), where w(e;) =
1if e; is a hyperedge that spans multiple elements (subsets)
of the partition of Vo and w(e;) = 0 otherwise.

We identify two phases in multilevel algorithms: a coars-
ening phase and a partitioning phase. Coarsening is to
merge vertices from a given hypergraph Hy to yield an equiv-
alent hypergraph Hy = (Vi, Ei) where v; € Vi is a clus-
ter of merged vertices from hypergraph Hp. In the coars-
ening phase, coarsening is applied iteratively to the latest
coarsened hypergraph to obtain a sequence Hi, Ho, ... , H;

|V§'/—1|
according to the coarsening algorithm used. Fol‘ lelxample,
some coarsening algorithms are based on a maximal match-
ing strategy, where clusters of H; result from the merging
of two randomly selected vertices from H;_;. In this case
the coarsening ratio Hﬁ,;‘l‘ 2 ie, |Vi|= &, i <. Let
X; C Xo be the search space of the partitioning problem
for hypergraph H;, ¢ > 0. A ratio such as 5z = n; for the
number of vertices in hypergraph H; yields a search space

for H; of size

wi=3 (3)(5%)- (%) (3)
AN 5 VAN 3

varies

of coarsened hypergraphs. The coarsening ratio

= %"—"ni which is substantially smaller than the size of
(ENE
solution space |Xo| & 2 (Jf;%. Therefore, the coarsening
ny

phase of multilevel algorithms is followed by a partition-
ing phase, where the substantially smaller size of the search
space of X; is used to scan as exhaustively as possible the
whole solution space of the hypergraph partitioning problem
Hy. The best partitioning found in this way is propagated
to the next level as a solution to iteration ¢(0) of the move-
based heuristic used in this level. This process is repeated
for hypergraphs H;_o, H;_3,... , Ho.

The multilevel partitioning strategy can be defeated in at

least two ways. Let %lf(m be the average hyperedge-cuts
of the solution (search) space X;. Assuming a coarsening
strategy based on maximal matching, it is likely that coars-
ening will have no impact on the distribution of the cost
function in coarsened hypergraphs (low and high cost par-
titionings are removed from search spaces with equal prob-
ability during the coarsening phase). Therefore the aver-
age hyperedge-cuts of search space X;, ¢ < [will be ap-
proximately constant. This in turn implies that maximal
matching coarsening smoothes the cost function by driving
out low and high cost partitionings. The smoothing action
of the coarsening phase can destroy optimal valleys from
search spaces, which will then makes impossible for a move-
based heuristic to identify good regions of the solution space.
There is no easy fix to this problem. Move-based heuristics
using multilevel searches, such as k-exchange neighborhood
heuristics [2] and simulated annealing, increase the number
of levels and spend more time to search each level. This fix
is time consuming.

Unlike maximal matching, a coarsening phase may not
just aims at reducing the size of hypergraphs, it may also
tries to help the partitioning phase by populating the search
spaces with good partitionings. In this case the average
hyperedge-cuts might not be constant across the search spaces
if, for example, the coarsening strategy is biased by the cost
function. Low cost partitionings might have proportionally
more representatives in search spaces X; than in the solution
space X. But then the partitioning phase could be trapped
in local optima. This problem also occurs in genetic algo-
rithms when they are trapped by a premature convergence
due to an unfavorable distribution of good but non-optimal
solutions in a population.

Reducing the size of the search space is not by itself a
sufficient condition to successfully identify optimum regions
of the solution space. Populating search space H; with good
but not optimal partitionings may just drag the search into
a poor local optimum of the solution space.

4. CoMHPALGORITHM

From a cooperative search perspective, the explicit genera-
tion of search spaces by multilevel algorithms has two ad-
vantages over the implicit levels of simulated annealing: it is
time efficient and the search spaces are stable. We propose
to use the explicit search spaces as defined by the coars-
ening phase of a multilevel algorithm as a tool to restrict
the search performed by move-based heuristics to a small
volume of the solution space.

Search spaces are static and may contain only poor local
optima. However, the relation between levels provides the
opportunity to design cooperation schemes capable to make
incremental changes to search spaces. These changes can be
used to regain the landscape of the cost function by reducing
the average hyperedge-cuts of the search spaces or to escape
from a local optimum in the set of walkers. This is one of the
main objective of the cooperation scheme that we are using
in the cooperative multilevel approach. We now describe
the coarsening strategy we use to generate the search spaces
and the cooperation scheme of this algorithm.

4.1 CoMHP Coarsening Strategy

‘We know that in the context of the k-way partitioning prob-
lem, coarsening strategies like maximal matching can be
used to obtain a k-way partitioning of a hypergraph Hy.
One need only to generate a sequence of coarsened hyper-
graph Hi, Hs, ... H; such that |V;| = k. Each vertex of H; is
then treated as a subset of a partitioning for Hy. Conversely,
k-way partitioning algorithms can be used to obtain the se-
quence Hi, H», ... , H; by calling the k-way partitioning al-
gorithm with k£ = |V;|. This approach to coarsening based
on a partitioning algorithm will be referred to as partition-
based coarsening.
Generally, matching-based coarsening algorithms use strate-

gies such as edge-coarsening, hyperedge-coarsening, and modified-

hypergraph-coarsening [4; 8] to reduce the size of the hyper-

graph. In our cooperative multilevel algorithm, the sequence

of coarsened hypergraphs is generated using the hMETIS k-

way hypergraph partitioning software [9]. For example, the
n

coarsening phase of our algorithm uses a %-way partition-

ing to get Hi, 5z-way partitioning to get H», etc. We stop
coarsening if £ < 200 vertices are produced or if the number
of hypergraphs exceeds 10. This number is purely arbitrary,
it was chosen because of the limited capacities of our parallel
computer system.

There are two strategies to compute a k-way partitioning
using multilevel algorithms: a divide-and-conquer approach
which first calculates a 2-way partitioning and computes re-
cursively a 2-way partitioning on each of the original sub-
sets; and a direct approach which calculates directly a k-
way partitioning. Partition-based coarsening can use both
approaches. If the partitioner is based on recursive bisec-
tion, we ask the partitioner to compute a k-way partitioning
where k = %, the number of vertices of the first coarsened
hypergraph in the sequence Hi, Hs,...,H;. The hyper-
graph H; corresponds to the log, n—1th bisection of the par-
titioner. For the other hypergraphs Hs, Hs, ... , H;, we use
respectively the partitionings of the bisections log, n—i, 1 <
i < Il. In this case all vertices in hypergraph H; are com-
position of two vertices from H;_1, hypergraphs are related
level by level. This is not necessarily the case when the
partitioner uses a direct approach to calculate a k-way par-
titioning. Our coarsening strategy uses the direct version

of hMETIS, for a multilevel structure with [levels, we call
hMETIS ! times, each time with the appropriate k value.
Here vertices of Hp that constitute a vertex of a coarsened
hypergraph H; can be distributed among several vertices in
any hypergraph Hj, ¢ < j.

Whether we use a direct or a bisection k-way partition-
ing algorithm for the coarsening phase, the construction of
the search spaces is biased by the cost function of the par-
titioning problem. We have done some preliminary tests
with coarsening strategies not biased by the cost function.
We always found better partitionings during the initial par-
titioning phase as well as during the search phase when
hypergraphs are coarsened by a partition-based coarsening
strategy (compared to matching-based coarsening strate-
gies). Partition-based coarsening appears to generate coars-
ened hypergraphs which have fewer hyperedges spanning
several vertices compared to those obtain by matching-based
coarsening. In this case, the average hyperedge-cuts of search
spaces should not be constant and it should be lower com-
pared to a matching-based coarsening. Most likely, the par-
titioning phase will be initiated from search spaces with sev-
eral local optima. For standard multilevel algorithms, hav-
ing fewer hyperedges might be a handicap since it may be
trapped during the uncoarsening phase in the local optima
of the search spaces. Our multilevel algorithm uses coop-
eration between levels to implement mechanisms to lower
or increase the average hyperedge-cuts of one or several hy-
pergraphs so as to focus or distance the search from local
optima of the solution space (as does most metaheuristics).

4.2 CoMHP Cooperation Scheme

Like any cooperative algorithm, our cooperative multilevel
algorithm is inherently parallel (distributed). The paral-
lelization is achieved by associating each hypergraph to a
process (processor). Exchanges of information can only oc-
cur between two adjacent processes, and two processes are
adjacent if they compute the partitionings of two adjacent
hypergraphs in the sequence Ho, Hi, ... ,H;. For example,
process p; is adjacent to processes p;—1 and p;+1. Exchanges
of information are initiated by the internal state of a pro-
cess, therefore interactions among processes take place asyn-
chronously. There are 3 categories of exchanges of infor-
mation: destroy operator, create operator and interpolation
operator.

In order to define formally these operators, let X;; and
Vit be respectively the search space and the set of vertices
of hypergraph H; at iteration ¢ of process p;. Let #; be
the maximum number of iterations executed by process p;.
Given that the computation is asynchronous and the size
of the hypergraphs are different, the maximum number of
iterations t; will be different for each process p;. Therefore
we define T = max{%o,?1,...,%} as the maximum number
of iterations executed by any of the processes involved in the
parallel computation. Let P(Vo) be the power set of V5. We
define V = 3.7 {Vot UVitU...UVit} C P(Vp), the set of
vertices in the multilevel structure that are created during
the parallel computation (V;z = @ for ¢ > ;). Similarly, we
define X = E’tT:O{Xlt UXor U...U Xlt} C X be the set
of partitionings in the search spaces generated during the
parallel computation (X;: = 0 for t > ;).

The sets X and V are finite, they can be enumerated.
Therefore a vertex v € V; corresponds to a set that has index
v in V, and for any value of ¢, the set V reflects the vertices

that exist in hypergraphs Ho, Hy, ... , H;. Furthermore, two
vertices vp,vq € V; iff v, Nwg = @. Similarly, z € X; is the
set that has index x in X.

We identify by s;'- the subset j of partitioning z; € Xo.
Let X!_; C Xo be a set of partitionings of hypergraph H;_1
such that the average hyperedge-cuts

Y5 fwy) € XI, Y flag) € Xioa
-, <)

i—1 ni—1

for some real constant ¢ < 1, nj_; = |X;_;| and as usual
n;—1 = |X;_1|- Destroy and create operators are based on
the subset X; ;; C X;—1 which represents the nj_; best
partitionings that have been found by move-based heuristics
in hypergraph H;_; at iteration ¢ of process p;.

4.2.1 Destroy Operator

The destroy operator of process p; gets good partitionings
from hypergraph H; ; and destroys the vertices of hyper-
graph H; that overlap subsets of those good partitionings in
H;_1. Therefore, this operator first identifies all the vertices
v € V; that satisfy vNsp # 0,v N sq # 0 for one z € X;_; ;
for which sp,s, € . Let D;; be the set of vertices v € V;
that overlap more than one subset s of a partitioning in
Xi_ 14 The objective of the destroy operator is to modify
the vertices of D;; such that they do not overlap the subsets
of at least one partitioning in X;,l,t. Consequently, for each
v € Dj;, the operator seeks a = € X{_l,t that has at least
two subsets overlapped by v. For example, if v overlaps
s1, s} € x1, then v is replaced by two vertices vi,v2 € V;
such that v1 C si and v» C s3. The vertices v1,vs are the
indexes for V; of two sets in V and obviously v1 Nvy = @
since v1 C v and v C v.

Usually we limit the set X]_; ; to only two partitionings
from H;_1 each time the destroy operator is executed. There
are no hard arguments to help define the size of X] i ;.
We know that if |X; ;| is too large, we risk to include
partitionings in X;_;; that are not that good, particularly
at the beginning of the computation. The execution of the
destroy operator if followed by the execution of a local search
on the repaired hypergraph H;.

4.2.2 Create Operator

The create operator of process p; gets good partitionings
from hypergraph H;_; and creates new vertices in H; by
merging vertices of H;_; that are often in the same subsets
of all partitionings in X;_;;. For example, let X;_,; =
{z1, 2,23}, create looks for a vertex v € V;_1 such that
v C st vC st vcC st Let Ciy C Vi_y be the set of vertices
in V;_1 that are in the same subset of all partitionings in
Xi_1+. The objective of the create operator is to create new
vertices in V; by merging vertices from C;:. To do that,
create follows two criteria: 1) seeks two vertices vp,vq € Ciy
such that vp, v4 are in the same subset s in all partitionings
T € Xf—u; 2) the two vertices are in the same hyperedge.

Let vnew be a new vertex of V; following the merger of
Up,Vg. Then vpew Nv, # @ for some vertex v, € V; because
vp C v, or vp Cv,. The create operator ended by a remap-
ping of vertex v, € V; to a new set in V if v, fails the test
Vnew NV, = 0 (in other words, v, = v, \ Unew)- The create
operator tends to reduce the number of vertices in a hyper-
graph, this balance the effect of the destroy operator which
tends to increase the number of vertices.

4.2.3 Interpolation Operator

The interpolation operator of process p; uses the current best
partitioning of H;41 as an initial solution for a move-based
search of hypergraph H;. Let = be the best partitioning of
hypergraph H;i1 at iteration t of process p;. Because of
the coarsening strategy used in CoMHP, it is possible that
vertices in H; will overlap several subsets of partitioning x.
A split of these vertices in H; need to be performed. Let
81, 82,..., 8k be the subsets of partitioning x. The interpo-
lation operator of process p; looks for every vertex v € V;
that overlaps more than one subset of the partitioning x.
Let v € V; be such a vertex overlapping subsets s, sq of .
Then two vertices vp,vq € V; are created in the following
manner: v, = v N $p and vy = v N sq. Following the split, a
search procedure is applied to hypergraph H; using an ini-
tial partitioning that reflects the partitioning obtained from
Hi+1.

4.2.4 The main loop of COMHP

The main loop of each process p; consists of 4 major steps
in the following sequence: destroy operator, interpolation
operator, create operator and global search.

CoMHP(); /* process p; */

Compute an initial partitioning;

While not terminated {
Apply Destroy operator
Execute move-based searches (FMS and PFM [5]) on Hj;
Apply Interpolation operator

Execute move-based searches based on good partitionings of H;;

Apply Create operator
Execute move-based searches on H;;
GlobalSearch() {
If number of vertices < 500
do random search;
else execute hMETIS; }
Save p;’s good local and global partitioning results;
} (end outer loop)
End CoMHP

We use different local and global search algorithms. Lo-
cal search algorithms start a search based on an existing
partitioning, while global search algorithms first generate a
partitioning and then perform a local search. We use two
local search algorithms in CoMHP. One is the Sanchis algo-
rithm (FMS) [11], the other is the multiway partitioning by
free moves (PFM) proposed by A. Dasdan and C. Aykanat
[6]. We also used two algorithms for the global search. One
is a random search algorithm, where an initial partitioning
is generated randomly, followed by the execution of a local
search to refine this partitioning. The random search algo-
rithm is used for high levels, for coarsened hypergraphs hav-
ing less than 500 vertices. We use the multilevel k-way hy-
pergraph partitioning algorithm [9] as another global search
algorithm in CoMHP.

4.2.5 How the Cooperation Scheme Works

In traditional multilevel partitioning, the multilevel hierar-
chy Hy, ..., H; is computed and then remains static as itera-
tive refinement takes place. The primary difference between
this approach and ours is that the hypergraphs Hi, ..., H;
change dynamically during the optimization. The operators
create, destroy, interpolate guide the perturbations of the
hypergraphs based on solutions generated so far. Destroy
operator finds those vertices in V; that overlap subsets of

Table 1: Number of vertices in each coarsened level and the
percent of vertices of level ¢ that are distributed in more
than one vertices in level ¢ + 1 after coarsening and after
partitioning for IBM16.NET

after coarsening after partitioning
Hgraphs | #vertices % #vertices %
Hy 183483 0.00% 183483 0.00%
H; 91647 33.74% 75941 42.83%
H, 45823 59.08% 39894 64.12%
Hj 22911 80.08% 21085 78.12%
Hy 11391 90.27% 11242 81.86%
H; 5631 93.16% 6253 77.55%
Hg 2815 95.35% 3790 69.31%
Hr 1407 97.73% 2227 60.71%
Hg 639 98.12% 1451 45.76%

good partitionings in X;_; and destroy them. Create oper-
ator populates hypergraph H; with good vertices (in term
of permutations). This in turn helps the interpolation oper-
ator to initiate move-based heuristics in interesting regions
of X;_1. One can imagine that only so many iterations are
necessary to find an excellent solution for hypergraph Hj,
but if the coarsening wasn’t fantastic, then H; might not
even be the right hypergraph to optimize. By letting H;
evolves into something else, we in effect, enable more de-
tailed exploration of the solution space at high levels in the
hierarchy.

One can see the evolution of the hypergraphs in Table 1.
In this table, column 1 identifies the hypergraphs and col-
umn 2 the number of vertices in hypergraph H; after coars-
ening. Since our coarsening strategy does not maintained
a level by level relationship as in traditional multilevel al-
gorithms, column 3 indicates the percentage of vertices in
hypergraph H; that spreads in more than one vertex in hy-
pergraph H;i, after coarsening. According to the defini-
tions in Section 4.2, v € H; is a set in V. So a vertex v € H;
spreads in more than one vertex of H;11 if vNv, # () for more
than one vertex v, € H;4+1. For example, Hy has no vertex
spreading in more than one vertex in H; since v € Hp is a
set with a single element in V. Naturally, as we go toward
the end of the hierarchy of hypergraphs, vertices correspond
to much larger set in V, which increases the probability that
they will be spreading in more than one vertex in the hy-
pergraph of the next level.

Columns 4 and 5 provide the same information as for
columns 2 and 3 once the partitioning phase has ended.
These two columns show the evolution of the hypergraphs
due to the cooperation scheme. For example, rows of hy-
pergraphs Hs to Hg show a tendency to restore a level by
level relationship among the hypergraphs. Less than 46%
of vertices of Hg are spreading in more than one vertex
in hypergraph Hg (the last hypergraph in the hierarchy).
This evolution is caused by the create operator which merges
two vertices of level i — 1 to form a vertex of level ¢. This
process is more acute in higher levels because hypergraphs
are smaller, more iterations of the outer loop are executed,
which in turns imply more interactions through the create
operator among the levels. Not shown in Table 1, is a similar
tendency from the partitioners to find better partitionings
at all levels as the three operators evolved the hypergraphs.

One can have a glimpse at the emergent behavior of this

cooperative algorithm through this restoration of the level
by level relationship. This is considered to be an emergent
behavior because nowhere in the code of the processes there
are instructions to restore this relationship. The restoration
is a consequence of the complex interactions among the hy-
pergraphs created by the cooperation scheme. By combining
multilevel algorithms with cooperative search, we have been
able to design a cooperation scheme that still allowed emer-
gent behaviors while the combined multilevel search spaces
act as an attractor on the dynamics of a cooperative search.
The system (the cooperating walkers) just don’t have access
to states outside what is allowed by the set of levels. We
expect the behavior of cooperative algorithms to be more
predictable when they are based on this design. The ex-
perimental results for the hypergraph partitioning problem
show such good and stable performances.

5. EXPERIMENTAL RESULTS

We have evaluated the performance of our CoMHP algo-
rithm on the ISPD98 benchmark suite of netlists [?]. We
compare the performance of CoOMHP with the latest version
of the hMETIS partitioning package. We have implemented
our parallel hypergraph partitioning algorithm and hMETIS
at the RCF (Research Computing Facility) of the University
of Nebraska-Lincoln. RCF possesses a shared memory SGI
02000 system with 16 250Mhz R10k CPUs, 4GB main mem-
ory, and runs on the IRIX 6.5 Operating System. For each
problem instance, we have executed 10 runs of hAMETIS with
recursive bisection and 10 runs with hMETIS-Kway (the di-
rect approach) [9]. Our algorithm has been run for 10 it-
erations of process po. Hypergraph Hy is the largest one
in the sequence of hypergraphs, therefore process po takes
more time than any other process to complete one iteration
of the search phase.

Tables 2 and 3 present the 2,4,8-way hyperedge-cuts for
respectively the unit cell area and the non-unit (real) cell
area with CoMHP (Co) and hMETIS (hM). Out of the 108
tests executed, hMETIS outperforms or have the same re-
sults as CoMHP in 8 instances, CoOMHP outperforms hMETIS
for 100 instances. For 2-way partitioning, the improvements
of COMHP over hMETIS are not significant. For 4-way and
8-way partitioning, COMHP can get up to a 15% hyperedge-
cuts improvements over hMETIS. For hMETIS, Tables 2
and 3 report the best solution of bisection or hMETIS-Kway.
In 102 cases, hMETIS with bisection found the best solution
while hMETIS-Kway got the 6 other instances.

Tables 4 and 5 present the runtime of both algorithms.
These runtimes are parallel computational time. For CoOMHP,
the runtime indicates the total time to run 10 iterations of po
plus the time to perform the coarsening phase. For hMETIS
we report the time to execute 1 run of the bisection approach
in order to factor the use of several processors by CoMHP,
this biases the results little bit in favor of hMETIS given
that CoMHP uses 10 processors only for a few problem in-
stances.

In Tables 4 and 5, on average hMETIS is 20 to 25 time
faster than CoMHP for the 108 tests. But currently, the
amount of improvement in the hyperedge-cuts of COMHP is
not significant after 3 or 4 iterations of the search phase by
process po. This is most likely caused by our coarsening al-
gorithm which is strongly biased by the cost function. The
search phase starts in good regions of the solution space,
causing CoMHP to converge rapidly toward good partition-

Table 2: Min-cut 2,4,8-way partitioning results with up to
a 10% deviation from exact partitioning, cells are assigned
unit area (Columns “hM” and “Co” stand respectively for
hMETIS and CoHMP).

Circuit

2-way 4-way 8-way

hM | Co | hM | Co | bM | Co

IBMO1 || 180 | 180 | 495 | 430 | 750 | 711

IBMO2 || 262 | 262 | 616 | 560 | 1841 | 1483
IBMO3 || 953 | 950 | 1682 | 1619 | 2402 | 2219
IBMO04 || 529 | 530 | 1689 | 1597 | 2778 | 2507
IBMO5 || 1708 | 1697 | 3024 | 2888 | 4306 | 3874
IBMO6 || 889 | 890 | 1484 | 1465 | 2275 | 2204
IBMO7 || 849 | 824 | 2188 | 2036 | 3308 | 3098
IBMOS8 || 1142 | 1140 | 2363 | 2241 | 3469 | 3240
IBMO09 || 629 | 620 | 1670 | 1606 | 2659 | 2474
IBM10 || 1256 | 1249 | 2283 | 2164 | 3761 | 3305
IBM11 || 960 | 960 | 2321 | 2196 | 3433 | 3160
IBM12 || 1881 | 1872 | 3730 | 3520 | 5972 | 5384
IBM13 || 840 | 832 | 1661 | 1671 | 2717 | 2483
IBM14 || 1891 | 1816 | 3278 | 3097 | 5060 | 4263
IBM15 || 2598 | 2619 | 5019 | 4591 | 6623 | 5960
IBM16 || 1755 | 1709 | 3816 | 3745 | 6475 | 5360
IBM17 || 2212 | 2187 | 5395 | 5194 | 8695 | 7960
IBM18 || 1525 | 1521 | 2881 | 2810 | 5169 | 4435

Table 3: Min-cut 2,4,8-way partitioning results with up to
a 10% deviation from exact partitioning, cells are assigned
non- unit (actual) area.

Circuit 2-way 4-way 8-way

hM | Co hM | Co hM | Co

IBMO1 217 215 343 340 606 573
IBMO2 || 266 | 247 | 470 | 399 | 833 | 762

IBMO03 707 608 | 1348 | 1220 | 1981 | 1879
IBM04 440 438 1321 | 1209 | 2408 | 2241
IBMO5 || 1716 | 1681 | 3002 | 2895 | 4331 | 3950
IBMO06 367 363 | 1149 | 1056 | 1716 | 1688
IBMO7 716 721 | 1539 | 1480 | 2918 | 2707
IBMOS8 || 1149 | 1120 | 2143 | 1992 | 3330 | 3120
IBMO09 523 519 | 1418 | 1334 | 2337 | 2079
IBM10 || 769 | 734 | 1845 | 1636 | 3098 | 2751
IBM11 || 697 | 688 | 1893 | 1699 | 2948 | 2768
IBM12 || 1975 | 1970 | 3577 | 3402 | 4957 | 4762
IBM13 859 832 | 1698 | 1568 | 2439 | 2298
IBM14 || 1520 | 1494 | 3048 | 2869 | 4833 | 4360
IBM15 || 1786 | 1771 | 4435 | 4314 | 6111 | 5756
IBM16 || 1681 | 1639 | 3562 | 3149 | 5580 | 5146
IBM17 || 2252 | 2156 | 4824 | 4393 | 8222 | 7003
IBM18 || 1520 | 1520 | 3104 | 2941 | 4833 | 4416

Table 4: Run-time performance for min-cut 2,4,8-way parti-
tioning with up to a 10% deviation from exact partitioning,
cells are assigned unit area.

Circuit 2-way 4-way 8-way

hM | Co | bM | Co | hM | Co
IBMO1 (| 0.2 5 0.3 7 0.5 11
IBMO2 || 04 10 0.7 12 1.1 21
IBMO03 || 04 16 0.8 17 1.1 25
IBMO04 || 0.5 16 1.0 19 1.3 26
IBMO5 || 0.7 | 18 1.2 24 1.6 30
IBMO6 || 0.6 | 21 1.2 23 1.7 33
IBMOQ7 || 1.1 32 2.0 38 2.6 53
IBMO08 1.6 | 36 2.6 51 3.4 59
IBMO09 || 1.0 | 34 2.0 40 2.6 58
IBM10 || 2.2 | 56 3.5 65 5.0 91
IBM11 | 1.5 | 50 | 3.0 | 59 | 3.9 | 78
IBM12 1.9 | 62 4.6 73 5.1 | 115
IBM13 || 2.0 | 60 3.6 72 5.1 | 100
IBM14 || 5.9 | 79 9.1 | 141 | 13.0 | 169
IBM15 || 6.6 | 121 | 11.0 | 176 | 14.1 | 217
IBM16 || 7.6 | 142 | 13.3 | 192 | 19.0 | 238
IBM17 || 9.4 | 219 | 17.1 | 196 | 22.2 | 374
IBM18 || 7.7 | 178 | 15.1 | 192 | 20.4 | 301

ings. Comnsequently, our choice of 10 iterations as stopping
criteria does not reflect accurately the current runtime com-
petitiveness of CoOMHP. We have used this criteria anticipat-
ing that we will be able to improve substantially the long
term convergence behavior and the hyperedge-cuts perfor-
mances of CoMHP in the future. Therefore 10 iterations
gives a more stable basis for comparing the runtime of this
algorithm with other partitioners. We have also performed
tests with hMETIS using 100 restarts and also allowing the
same runtime for h(METIS as for CoOMHP with 10 iterations.
The hyperedge-cuts were not substantially better than with
10 runs, in this regard hMETIS is quite stable.

6. CONCLUSION AND FUTURE WORK

Our work has focused on introducing and testing a new co-
operative multilevel hypergraph partitioning algorithm and
an associated partition-based coarsening strategy. Our al-
gorithm incorporates cooperative search, which has been a
successful paradigm to develop parallel algorithms for con-
straint satisfaction problems and global optimization prob-
lems. We have modified the cooperative search paradigm
to integrate the main concepts of multilevel algorithms, a
highly successful approach to graph and hypergraph parti-
tioning.

The resulting algorithm produces substantially better 4-
way and 8-way partitioning by comparison with hMETIS,
but it is slower than this partitioner. Improved runtime
performance of our algorithm is possible by modifying lo-
cal search algorithms used in the search phase. Standard
FM like algorithms are developed for refining random parti-
tioning. For already good partitions such those obtained by
CoMHP, we do not need to flip all vertices for refinement,
but rather stop the search after flipping part (20%, for exam-
ple) of the vertices. This offers an opportunity to speed-up
the search without degrading the quality of partitioning.

We plan to look more closely to the convergence behavior

Table 5: Run-time performance for min-cut 2,4,8-way parti-
tioning with up to a 10% deviation from exact partitioning,
cells are assigned non-unit (actual) area.

Circuit 2-way 4-way 8-way

hM [Co | hbM | Co | hM | Co
IBMO1 0.2 6 0.3 7 0.5 11
IBMO02 0.3 10 0.7 13 1.0 20
IBMO03 0.4 11 0.8 19 1.2 26
IBM04 0.5 16 0.9 18 1.3 26
IBMO05 0.6 18 1.2 23 1.6 35
IBMO06 0.5 15 1.2 22 1.7 35
IBMO07 1.0 29 2.0 41 2.7 54
IBMO08 1.2 25 2.2 35 3.1 57
IBM09 1.1 40 1.8 45 2.6 65
IBM10 1.7 52 3.4 64 4.9 93
IBM11 14 44 2.7 53 44 88
IBM12 2.0 58 3.8 75 5.1 | 113
IBM13 1.9 53 3.7 71 49 | 113
IBM14 6.0 81 9.0 | 145 | 13.0 | 151
IBM15 5.6 | 111 | 12.0 | 160 | 14.2 | 197
IBM16 6.7 | 168 | 13.1 | 197 | 18.0 | 264
IBM17 || 11.2 | 243 | 18.2 | 286 | 23.8 | 354
IBM18 8.7 | 189 | 15.9 | 235 | 20.5 | 296

of this algorithm, examining how the current cooperation
scheme and coarsening strategy interact with each other to
affect convergence. Future research will also examine co-
operation schemes involving non-adjacent hypergraphs, for
example using an interpolation operator between any hyper-
graph H; and hypergraph Hp.

Finally we are planning to apply this cooperative search
paradigm to a partitioner capable of partitioning hyper-
graphs with fixed vertices, to enhance its usefulness in VLSI
design.

7. REFERENCES

[1] In Stephanie Forrest, editor, Emergent Computation.
MIT /North-Holland, 1991.

[2] EH.L. Aarts and J.K. Lenstra. Introduction. In
E. Aarts and J.K. Lenstra, editors, Local Search in
Combinatorial Oprimization, pages 1-17. John Wiley
& Sons Inc., 1997.

[3] S.H. Clearwater, T. Hogg, and B.A. Huberman. Co-
operative Problem Solving. In B.A. Huberman, editor,
Computation: The Micro and the Macro View, pages
33-70. World Scientific, 1992.

[4] J. Cong and M.L. Smith. A Parallel Bottom-Up Clus-
tering Algorithm with Applications to Circuit Parti-
tioning in VLSI Design. In Proc. 30th ACM/IEEE De-
sign Automation Conference, pages 755-760, 1993.

[6] A. Dasdan and C. Aykanat. Two Novel Circuit Par-
titioning Algorithms Using Relaxed Locking. IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, 16(2):169-78, Feb. 1997.

[6] T. Hogg and C. Williams. Solving the Really Hard
Problems with Cooperative Search. In Proceedings of

[7

—

[10]

[11]

[12]

[13]

the 11th National Conference on Artificial intelligence
(AAAI93), pages 231-236. AAAI Press, 1993.

J.J. Hopfield. Neural Networks and Physical Sys-
tems with Emergent Collective Computational Abili-
ties. Proceedings of the National Academy of Sciences
of the United States of America, 79:2554-2558, 1982.

G. Karypis, V. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel Hypergraph Partitioning: Application in
VLSI Domain. IEEE Transactions on VLSI Systems,
1998.

G. Karypis and V. Kumar. Multilevel k-way Hyper-
graph Partitioning. In Proc. 86th ACM/IEEE Design
Automation Conference. Association for Computing
Machinery, 1999.

B.W. Kernighan and S. Lin. An Efficient Heuristic Pro-
cedure for Partitioning Graphs. Bell System Technical
Journal, 49:291-307, 1970.

L.A. Sanchis. Multiple-way Network Partitioning.
IEEE Trans. Comput., 38(1):62-81, Jan. 1989.

M. Toulouse, T.G. Crainic, and B. Sansé. Self-
Organization in Cooperative Tabu Search Algorithms.
In 1998 IEEE International Conference on Systems,
Man, and Cybernetics, pages 2379-2385. Omnipress,
1998.

M. Toulouse, K. Thulasiram, and F. Glover. Multi-
Level Cooperative Search. In 5th International Euro-
Par Parallel Processing Conference, volume 1685 of
Lecture notes in Computer Science, pages 533-542.
Springer-Verlag, 1999.

