
Chapter-Glover-Hanafi-TSOP-2011 1 19/09/11

CONVERGENT TABU SEARCH FOR OPTIMAL

PARTITIONING

Fred Glover

OptTek Systems Inc., 2241 17th Street, Boulder, CO 80302, USA

glover@opttek.com

Saïd Hanafi

LAMIH - UMR CNRS r° 8530

Unité de Recherche Opérationnelle et d’Aide à la Décision

Université de Valenciennes et du Hainaut-Cambrésis

Le Mont Houy - B.P. 311 - 59304 Valenciennes Cedex – France

Said.Hanafi@univ-valenciennes.fr

July, 2011

Abstract

We consider a specialization of tabu search for optimal partitioning problems, which

can be used to model a wide variety of binary discrete optimization problems. Our method

constitutes a form of tree search that applies under more general assumptions than

standard tree search approaches. Moreover, the method allows combinations of problem

restriction and problem relaxation strategies that are not available in ordinary branch and

bound.

Keywords: Tabu search; Convergence; Recency memory; Partitioning problem.

mailto:glover@opttek.com

Chapter-Glover-Hanafi-TSOP-2011 2 19/09/11

1. Introduction.

We consider a specialization of tabu search (TS) for combinatorial optimization

problems that belong to the class of optimal partitioning problems. These problems

encompass a wide range of classical applications, and include pure 0-1 integer

programming problems by incorporating penalty functions for violating problem

constraints. Our TS specialization for these problems constitutes a form of tree search that

applies under more general assumptions than standard tree search approaches, with the

ability to generate precisely the set of feasible solutions to all problems satisfying these

assumptions. Moreover, the method can use bounding information and other structural

considerations to bypass examination of dominated solutions, as in customary branch and

bound. However, its organization allows combinations of problem restriction and problem

relaxation strategies that are not available in ordinary branch and bound.

Our approach is based on the application of two-attribute moves for transitioning from

one solution to another, which may be viewed as exchanging values between two

variables or exchanging elements between two sets. In the special case of formulations

where these moves collapse to single attribute moves (such as changing the value of a

single variable), and where variables are allowed to take dummy values that correspond to

assigning them no values, the method reduces to the type of branch and bound approach

commonly applied to solving integer programming problems. In this instance feasible

solutions for a particular structure are effectively treated as unimportant by standard

methods; i.e., feasibility relative to the tree search is customarily defined by constraining

integer vectors to be restricted by upper and lower bounds on their components, and

problem relaxations are used to weed out infeasibilities that derive from consideration of

other problem constraints. By contrast, our tabu search specialization directly generates

solutions that satisfy more limiting conditions, before introducing information provided

from problem relaxations. The outcome yields a pliable and effective form of tree search,

with a very economical memory structure. In addition, we introduce a dynamic procedure

that defers the identification of forbidden (tabu) elements, yielding a search method with

expanded flexibility. This dynamic approach allows further exploitation of restriction and

relaxation strategies.

2. Problem Formulation.

Chapter-Glover-Hanafi-TSOP-2011 3 19/09/11

The Optimal Partitioning (OP) Problem may be defined as follows. We seek a

partition of a set R = {1, …, r} into two sets P and Q, where we require |P| = v for a

specified constant v, to minimize an objective function f(P, Q). The set R may be

conceived as an index set for a collection of elements, or for a vector of zero-one

variables, where choosing an index to belong to P corresponds to assigning the associated

element to a specified class or setting the associated variable equal to 1. In addition, to

requiring |P| = v (or equivalently |Q| = r - v), for increased generality we incorporate a

feasibility structure that makes reference to nested subsets Rk of R, for k = 1, …, K, where

the nesting condition specifies that any pair of these subsets must either be disjoint or one

of the pair must be contained in the other. Then we stipulate that between uk and lk

elements of Rk must belong to P, for each k, where uk and lk are specified constants

satisfying uk  lk. (If K = 0, we understand this condition to be irrelevant. Equivalently we

may take K = 1 and specify R1 = R and u1 = l1 = v.)

In addition, relative to the minimal subsets Rk of R, which contain no other subsets

within them, we allow consideration of special sets of ordered pairs Ok  {(i, j) : i, j 

Rk}. (For the purpose of creating the sets Ok we may introduce new subsets Rk that include

any elements of a given subset that belong to no subset within it, thus allowing each such

new Rk to qualify as minimal. Values of uk and lk for these new subsets may be chosen to

be unrestrictive.) The elements (i, j) of Ok are assumed to define a partial ordering, where

such an ordering is established under the condition where (i, j) represents the logical

precedence relationship “i  P implies j  P”. (Note if the subsets Rk are pairwise disjoint,

then each Rk provides a basis for such a partial ordering.) Thus, by these conventions, we

obtain the following formulation :

Problem OP.

Minimize f(P,Q)

subject to

(1) P and Q partition R

(2) |P| = v

(3) lk  |Rk  P|  uk, k = 1, …, K, for nested Rk  R

(4) i  P implies j  P, for each (i, j)  Ok, and for k ranging over minimal Rk.

A variety of different types of problems result by considering only subsets of the

constraints (1) – (4), or by introducing restrictive assumptions about the nature of the sets

Chapter-Glover-Hanafi-TSOP-2011 4 19/09/11

Rk or Ok. For example, classical graph partitioning problems arise as an instance of the

case where (3) and (4) are entirely disregarded. The inclusion of the nesting inequalities of

(3) encompasses problems arising in optimal inventory handling, and the inclusion of the

logical implications of (4) is relevant to problems from the domain of logical inference.

We will conceive constraints (1) and (2) as fundamental to the OP formulation, though it

is easily possible by introducing dummy elements and related artifices to render them

redundant, so that they are not a necessary limitation on constraints (3) and (4), as we will

show shortly.

Other restrictions will also later be allowed to apply to the sets P and Q. At the

moment, however, we will suppose any additional restrictions are reflected in the values

taken by f(P, Q), handling these constraints in a penalty function formulation. In general,

it is important to identify conditions that need not to be embedded in penalty function

evaluations. The ability to generate precisely the set of feasible solutions under such

conditions can involve a much smaller set of elements when feasibility is not relegated

solely to the control of penalty functions. We will see, for example, that it is possible to

incorporate conditions that permit the set P to range over the set of bases of a matroid,

which encompass a wide variety of problem structures. We also include conditions that

permit the OP problem to model multidimensional knapsack problems and generalized

covering problems.

It is useful to consider how the OP problem can be related to alternative problem

formulations by the device of coding variables to represent set membership. We give an

example as follows.

Zero-One IP Problems.

Pure 0-1 IP problems fall in the OP problem classification, by means of the penalty

function representation, using a straightforward coding of variables. Let xk, k = 1,…, K

denote a set of 0-1 variables, and let the two possible value assignments, xk = 0 and xk = 1,

for a given k, be coded to correspond to two indexes of an associated set Rk; e.g.,

Rk = {k, K + k}. The second element K + k of Rk will be conceived to correspond to a new

variable xK + k that represents the complement of xk, i.e., xK + k = 1 – xk. Hence in the 0-1 IP

problem exactly one of these two variables must receive the value 1 and the other must

receive the value 0. To express this condition in the OP formulation, we consider the

operation of choosing an element j of Rk to belong to P as being equivalent to specifying

that xj = 1, hence we want to assure that exactly one element j = k ou K + k from Rk is

Chapter-Glover-Hanafi-TSOP-2011 5 19/09/11

selected. This corresponds to choosing exactly one of xk = 1 or xK + k = 1 (hence, in the

latter case, xk = 0). Stated in terms of the constraints of (3), we must specify that |Rk  P| =

1, which results by stipulating uk = lk = 1. We note in this case that R = {1, …, 2K} and the

sets Rk are pairwise disjoint.

The logical implication constraints of (4) are disregarded, in this instance, and the

complete formulation results by expressing (2) as |P| = K (i.e. setting v = K), which in fact

is redundant since exactly one element of each Rk is chosen to belong to P by the indicated

form of (3).

Alternatively, the OP problem can be reexpressed in the form of a 0-1 problem. To

show this, for each j  R we similarly introduce a 0-1 variable xj where xj = 1 if j  P and

xj = 0 if j  Q. Let x denote the vector (xj : j  R), and let g(x) = f(P, Q). Then we may

write the OP problem as the following 0-1 integer program :

Minimize g(x)

Subject to

(1’) xj = 0 or 1, j  R

(2’) vx
Rj

j 


(3’) lk  
 kRj

jx  uk, k = 1, …, K

(4’) xi  xj, (i, j)  Ok for k over minimal Rk.

The constraints (1’) to (4’) correspond directly to the constraints (1) to (4). While we

consider the constraints (1) and (2), or equivalently (1’) and (2’), to be fundamental to our

formulation, the Appendix shows the preceding formulation can represent a problem in

which v is replaced by upper and lower bounds. We will subsequently consider additional

kinds of constraints that can be explicitly included in this formulation without having to

be incorporated into the function g(x).

3. Convergent Tabu Search

Many optimization techniques (both heuristic and exact) for solving combinatorial and

nonlinear problems are iterative neighborhood search procedures – i.e., they start with an

initial solution (feasible or infeasible) and repeatedly construct new solutions from current

solutions by moves defined by reference to a neighborhood structure. The process

continues to generate a trajectory of “neighboring solutions” until a certain stopping

Chapter-Glover-Hanafi-TSOP-2011 6 19/09/11

criterion is satisfied. We assume the reader has a rudimentary acquaintance with tabu

search as a basis for motivating the key steps of our approach. (For background see, for

example, Glover and Laguna (1997).) However, the statement of the method and its

associated properties can be understood directly, without requiring knowledge of tabu

search to establish their validity.

The adaptive memory approach of Tabu Search generates a neighborhood trajectory

by including a mechanism that forbids the search to revisit solutions already encountered

– unless the intervening trajectory is modified (see Glover (1990)). The main goal of

memory structures in TS is not simply to forbid cycling, however. In fact, the choice of a

given neighborhood and a decision criterion for selecting moves with TS can force some

solutions to be revisited before exploring other new ones. Within this context, a proposal

of Glover (1990) identifies a simple rule for revisiting solutions that is conjectured to have

implications for finiteness in zero-one integer programming and optimal set membership

problems. Hanafi (2000) proves Glover’s conjecture under the assumption that the graph

of the neighborhood space is connected and symmetric. Glover and Hanafi (2002)

provided new proofs that yield specific bounds establishing the finite convergence of tabu

search, specifically for certain TS algorithms based on recency memory or frequency

memory.

The results distinguish between symmetric and asymmetric neighborhood structures

and provide insights into the sequences of solutions generated by the search. The

outcomes disclose interesting contrasts between TS trajectories and the those generated by

the more rigid rules underlying tree search methods. Based on these findings, we also give

designs for more efficient forms of convergent tabu search, and provide special rules that

create a new type of tree search. The finiteness of these methods suggests an important

distinction between their underlying ideas and the rationale that gives rise to “infinite

time” convergence results for certain randomized procedures such as annealing.

Let X be the set of feasible solution, each solution x  X has an associated

neighborhood N(x), and let Time(x) = the most recent time (iteration) that solution x was

visited by a search process, whose form is determined as follows.

Convergent Tabu Search (CTS)

Step 0: Initialization, the values Time(x), x  X, begin as arbitrary nonnegative

integers, and the starting solution x* for the search is assigned a value so that Time(x*) >

Chapter-Glover-Hanafi-TSOP-2011 7 19/09/11

Time(x) for all x other than x*. (This includes the case where we begin with Time(x) = 0

for all x  X except x*. Select a starting solution x  X and set Iteration = 0;

Step 1: Set Time(x) = Iteration. Select an unvisited neighbor x’  N(x) such that

Time(x’) = 0, if one exists, and otherwise choose to visit a solution x’ = argmin{Time(y) :

y  N(x)}; Time(x) = Iteration.

Step 2: Stop if all solutions in X are visited i.e., Time(x) > 0,  x  X. Otherwise set

Iteration = Iteration + 1; x = x’ (move from x to x’); go to Step 1.

We now state some key properties of our method, which follow from the analysis of

Glover and Hanafi (2002).

Property A. Denote the cardinality of X by n = |X|, and consider a value Un for n ≥ 2

which is given recursively by U1 = 0 and define Un+1 = 2Un + 1, for n ≥ 1. Beginning with

any solution x*  X, the CTS method will visit every solution in X in at most Un steps if X

is finite and there exists a neighborhood path from every solution in X to every other

solution in X.

The “min{Time(x)} rule” is the one called the Aspiration by Default rule in the TS

literature. Since frequency-based memory is also useful in TS, it is natural to speculate

that a “frequency version” of Property A is valid. We apply the natural definition,

Frequency(x) = the number of times x has been visited, and replace Time(x) by

Frequency(x) and set Frequency(x) = Frequency(x) + 1 after visiting solution x. The

conclusion of Property A holds when CTS is based on frequency memory.

Additional enhancements that are possible using this TS methodology include the use

of an associated Reverse Elimination Memory for streamlining the new tree search

procedure associated with the TS process (which differs from the convergent TS approach

that uses more flexible memory). We also propose an approach for accelerating the

classical tabu search Aspiration by Default rule in this setting, which may transform an

exponential search into a much faster polynomial search. Finally, we give designs for

more efficient forms of convergent tabu search in general.

In contrast to our previous use of the label Time(x) for each solution x, however, we

add the stipulation that as soon as Time(x) is assigned a value (i.e., as soon as x is visited),

we do not permit its value to be further changed. Accompanying this, we now reverse the

Aspiration by Default rule, to require that, whenever all elements of N(x) have previously

Chapter-Glover-Hanafi-TSOP-2011 8 19/09/11

been visited, the method moves from x to the node x’  N(x) that has the largest (rather

than smallest) value of Time(x’), subject to the limitation that this value must be smaller

than that of Time(x) itself. The resulting method is as follows.

Tabu Tree Search (TTS)

1. From a given solution x, move to an unvisited neighbor x’  N(x) whenever

possible, and stop if the label thus assigned to x’ is Time(x’) = |X|. Otherwise,

2. Move to the visited neighbor x’ with the largest value of Time(x’) ≤ Time(x).

We establish the relevant properties of the method as follows, under the assumption

that the graph of the neighborhood space is connected.

Property B. The TTS method generates a tree, rooted at the initial solution, that spans

the nodes of the neighborhood graph. Each edge of the tree is crossed exactly once in the

direction away from the root, and at most once in the direction toward the root. (No edges

outside of the tree are crossed.) In addition:

(a) The unique path from any solution to the root is generated by repeatedly executing

the rule of Step 2 of the TTS method.

(b) Each time any solution x is visited, each labeled neighbor x’ of x is either an

ancestor or descendant of x in the tree currently constructed (i.e., either x’ lies on the path

from the root to x, or else lies on the path from the root to x’).

(c) Each time step 2 is executed to reach a visited node x’, all nodes of the graph that

are neighbors of visited nodes x”, where Time(x”) > Time(x’), are also visited nodes.

(d) Each time step 1 successfully identifies an unvisited neighbor of x, then node x

satisfies the condition x = Argmax{Time(y) : y is a node of the current tree and y has an

unvisited neighbor}.

In common with the Aspiration by Default rule, the TTS approach in some cases may

visit all solutions by only visiting each solution a single time, hence effectively generating

a Hamiltonian path through the neighborhood space, in contrast to the type of trajectory

created by usual forms of tree search. However, more importantly, the TTS approach

allows substantially greater flexibility of choice than customary types of tree search, as

embodied in branch and bound approaches. On the other hand, the TTS structure differs

according to the choices made – that is, different choices may produce different numbers

Chapter-Glover-Hanafi-TSOP-2011 9 19/09/11

of revisited solutions (and, as previously remarked, some may produce no revisited

solutions), thus producing trees of different topologies.

4. Tabu Search Specialization for OP.

Our specialization of tabu search to the OP problem begins with arbitrary sets P and Q

satisfying the constraining conditions of the problem. Each move consists of identifying

an element p of P and an element q of Q and exchanging them, thus redefining P = P – p

+ q and Q = Q – q + p (applying the natural convention to the meaning of the symbols +

and –). For greater heuristic effectiveness, we suppose that candidate list strategies and

evaluation criteria are employed to choose a “best” current move from those available at

each step, but we will not bother to refer to these aspects of the method in its description.

The elements p and q, and the ordered pair (p, q) (which implicitly associates p with P

and q with Q), are taken to be the move attributes that will be used to define tabu status.

Elements chosen as attributes in tabu search, for the purpose of determining tabu status,

are often treated differently from each other according to their role in defining a move --

hence in this case, for example, according to whether such an element is transferred from

P to Q, or vice versa. However, in the present specialization we treat all elements p and q

in the same way. In particular we maintain a single tabu list, which we denote by

tabu_list, to record each element that becomes tabu.

A move (in contrast to an element) will be classified tabu, and hence will be forbidden

to be executed, if any of its elements is tabu. To apply this classification, we select only

one of the two elements p and q associated with a given move to receive a tabu status, and

allow this choice to be made arbitrarily at each step. (To compare these conditions with

other common options, we note that assigning a tabu status to both elements p and q

would create a stronger tabu restriction rendering a larger number of moves tabu. On the

other hand, these alternatives would be weakened by specifying a move to be tabu only if

all its elements are tabu.)

The move attribute represented by the ordered pair (p, q) gives rise to the weakest type

of tabu restriction, by specifying the reversed pair (q, p) to be tabu (hence forbidding a

move that simultaneously puts p back in P and q back in Q). This restriction is dominated

by the restriction that classifies a move tabu if it contains a (selected) member element p

Chapter-Glover-Hanafi-TSOP-2011 10 19/09/11

or q of the pair (p, q). Hence the attribute pair (q, p) is relevant only in the situation where

all current moves are tabu. In this case we apply the standard criterion of choosing a move

according to aspiration by default, which selects the weakest tabu move as the one to

execute.

These simple conventions determine the basis of our TS specialization, and we

disregard other components of tabu search, such as special short and long term strategies

for intensification and diversification. (These additional components can be included to

provide a more flexible search structure, provided the specialized form is relied upon as an

underlying process that is recovered to continue the search after intervening departures.)

Memory Structure.

A memory structure for handling the preceding conventions is provided by

maintaining tabu_list as an ordered list, and by specifying that each new element is added

at the end, as frequently done in classical tabu search developments. We let last(tabu_list)

denote the current last element of the list. Hence the operation of adding an element e (= p

or q) may be denoted by stipulating tabu_list = tabu_list + e, where e becomes the new

element identified as last(tabu_list). (We do not bother to give the list a more advanced

structure, or to treat it in an implicitly circularized form, since the indicated organization

suffices for the current specialization. Also, for simplicity of description, we will not

make reference to auxiliary pointer arrays that identify locations of elements on tabu_list,

though we will understand such arrays to be used for efficient implementation.)

Ordered pairs (q, p) that identify the weakly tabu moves are similarly recorded on a

list denoted weak_tabu_list. Upon executing a move associated with the ordered pair

attribute (p, q), we therefore add the tabu attribute (q, p) to the end of weak_tabu_list by

the operation weak_tabu_list = weak_tabu_list + (q, p).

These operations have several implications. We discuss these briefly to motivate the

precise rules adopted in our specialization. Readers interested only in the form of these

rules, without reference to their motivation, may skip the next subsection.

Consequences of the Specialized Organization.

When a (weak) tabu move identified by a pair (q, p) is executed, the organization of

the procedure always results in (q, p) = last(weak_tabu_list). It is evidently appropriate to

Chapter-Glover-Hanafi-TSOP-2011 11 19/09/11

remove the pair (q, p) from weak_tabu_list at this point, since the tabu condition

represented by this pair has been countermanded. (This follows the usual design of the

tabu search, where executing a tabu move is accompanied by cancelling the condition that

made it tabu.) Similarly, tabu conditions that were generated after the point when (q, p)

was added to weak_tabu_list (hence which were created under the assumption that the

move associated with (q, p) is forbidden) no longer remain relevant. Thus, we likewise

discard these conditions when the tabu move associated with (q, p) is executed.

It will happen that some of these conditions are discarded automatically without

having to change the membership of elements on tabu_list. To see this, note the element p

or q that was added to tabu_list, at the same time that (q, p) was added to weak_tabu_list,

is an attribute both of (q, p) and of the reverse pair (p, q). When the tabu move identified

by (q, p) is executed, the TS approach causes its reverse move (p, q) in turn to become

tabu. Consequently, we can manage this simply by leaving the previously chosen element

p or q on tabu_list. (The element (p, q) is not put on weak_tabu_list at this point, because

the operation of executing a tabu move precludes a weak status for its reversal.)

The remaining tabu conditions that need to be discarded, as previously observed, are

the strong tabu conditions that arise when no elements are placed on weak_tabu_list. That

is, when an element e = p or q is allowed to remain on tabu_list (upon executing an

associated tabu move identified by (q, p)), we may properly view this as being an

operation that first removes e from tabu_list and then places it back, but with a different

status -- because upon placing it back, no associated attribute (p, q) is added to

weak_tabu_list. We underline e to differentiate the stronger status that e gains when it is

thus “re-placed” on tabu_list. This convention gives a convenient device for identifying

and discarding tabu elements that are not updated automatically, noting that such elements

are precisely the members of tabu_list that are underlined. Similarly, elements p and q,

and ordered pairs (p, q), that receive an implied tabu status as a result of elements already

on tabu_list (that is, which cannot take part in an exchange, while maintaining feasibility

and satisfying the goal of obtaining an improved solution), are underlined and added to

tabu_list. Such a use of underlining represents an extension of the approach introduced in

(Glover, 1965), which has likewise proved useful in a more restricted implicit

enumeration context (Glover, 1965).

Chapter-Glover-Hanafi-TSOP-2011 12 19/09/11

Structure of the Method.

An appropriate rule for underlining elements of tabu_list, as subsequently identified,

we define underline_end to be the sublist consisting of all underlined elements at the

“end” of tabu_list, that is, all underlined elements that follow the last non-underlined

element. This sublist is empty if last(tabu_list) itself is not underlined. (If all elements of

tabu_list are underlined, then underline_end = tabu_list.) Then upon executing a tabu

move, it follows that the tabu elements to be discarded are those that belong to

underline_end, and we delete them simply by redefining tabu_list = tabu_list –

underline_end.

These observations are embodied in the following description of the specialized TS

approach for the OP problem, which we call the TS-OP method. For notational

convenience, we introduce a parameter d that refers to the depth of the search, and

maintain the convention of designating an element p or q, or an ordered pair (p, q), to be

tabu if it lies on tabu_list. Actually, the tabu_list can contain pairs as well as single

elements. But tabu_list only contains pairs only if they are underlined. The term feasible

refers to solutions (sets P and Q) that satisfy the constraints (1) – (4) of the OP problem.

Chapter-Glover-Hanafi-TSOP-2011 13 19/09/11

The Specialized TS-OP Method.

0. Start with an initial feasible pair P and Q. Let tabu_list and weak_tabu_list both

being empty, and let the depth d = 0. Also let P* = P and Q* = Q, identifying the

best current known solution.

1. Given the restrictions on exchanges embodied in tabu_list, if feasibility and the

goal of improving the best known solution prevent elements or ordered pairs from

taking part in an exchange, then underline such elements and pairs and add them to

the end of tabu_list. (These additions may lead to other additions.)

2. Choose a pair (p, q) satisfying p  P and q  Q, where p, q and the pair (p, q) are

not tabu, such that exchanging p and q between P and Q will create a new feasible

solution. Then, if such a pair is found, choose e = p or e = q and set

P = P – p + q

Q = Q – q + p

tabu_list = tabu_list + e

weak_tabu_list = weak_tabu_list + (q, p)

d = d + 1.

If now f(P, Q) < f(P*, Q*), set P* = P and Q* = Q.

3. If no pair (p, q) can be found to satisfy the conditions in Step 2: terminate if d = 0

(or equivalently if weak_tabu_list is empty); otherwise let (q, p) =

last(weak_tabu_list), and set

P = P + p - q

Q = Q + q - p

tabu_list = tabu_list – underline_end

weak_tabu_list = weak_tabu_list - (q, p)

d = d - 1.

Underline the current element last(tabu_list) (which is either p or q).

4. After executing Step 2 or Step 3, return to the start of Step 1.

Chapter-Glover-Hanafi-TSOP-2011 14 19/09/11

It is possible to update only P (and to record only P* = P) in the foregoing procedure,

since Q is automatically known from P. Relative to the 0-1 IP problem representation of

Section 2, this update corresponds to changing the value of xp from 1 to 0 and of xq from 0

to 1 in Step 2, and changing the value of xp from 0 to 1 and of xq from 1 to 0 in step 3.

Note also that the depth d is equal to the size of weak_tabu_list.

The effort of checking whether the exchange of p and q in Step 1 is feasible is trivial

where logical precedence constraints are not included and where the sets Rk are pairwise

disjoint. Fast procedures to identify feasible exchanges, without having to check each one

independently of the others, are given by the results of Glover (1965) in the case of the

nested inequality constraints and of Glover and Greenberg (1989) in the case of the logical

precedence constraints.

To illustrate how the foregoing TS-OP method works, we will consider an instance of

OP problem with r = 5 and v = 2 where only constraints (2) and (3) are present and the

goal is to enumerate all feasible solutions.

iteration x Move TL |TL| WTL |WTL| Depth

1 11000 (1,3) {} 0 {} 0 0

2 01100 (2,4) {1} 1 {(3,1)} 1 1

3 00110 (3,5) {1,2} 2 {(3,1);(4,2)} 2 2

4 00011 (5,3) {1,2,3} 3 {(3,1);(4,2);(5,3)} 3 3

5 00110 (4,5) {1,2,3} 3 {(3,1);(4,2)} 2 2

6 00101 (5,4) {1,2,3,4} 4 {(3,1);(4,2);(5,4)} 3 3

7 00110 (4,2) {1,2,3,4} 4 {(3,1);(4,2)} 2 2

8 01100 (3,4) {1,2} 2 {(3,1)} 1 1

9 01010 (4,5) {1,2,3} 3 {(3,1);(4,3)} 2 2

10 01001 (5,4) {1,2,3,4} 4 {(3,1);(4,3);(5,4)} 3 3

11 01010 (4,3) {1,2,3,4} 4 {(3,1);(4,3)} 2 2

12 01100 (3,1) {1,2,3} 3 {(3,1)} 1 1

13 11000 (2,3) {1} 1 {} 0 0

14 10100 (3,4) {1,2} 2 {(3,2)} 1 1

15 10010 (4,5) {1,2,3} 3 {(3,2);(4,3)} 2 2

16 10001 (5,4) {1,2,3,4} 4 {(3,2);(4,3);(5,4)} 3 3

17 10010 (4,3) {1,2,3,4} 4 {(3,2);(4,3)} 2 2

18 10100 (3,2) {1,2,3} 3 {(3,2)} 1 1

19 11000 {1,2} 2 {} 0 0

Solutions depicted in blue are 3-times revisited and solutions in green are revisited 2-

times, finally the remain solutions are revisited exactly once. Moves in red and bold are

tabu moves.

Chapter-Glover-Hanafi-TSOP-2011 15 19/09/11

The main results about the foregoing procedure may be stated as follows.

Property C. The TS-OP method generates each feasible solution to the OP problem

formulated with constraints (3) and (4) redundant with a maximum depth d  r – 1. In

addition, d  v if e is always selected to be q in Step 1, and d  r – v if e is always selected

to be p in Step 1.

Let F(k) = the number of distinct solutions visited exactly k times by the TSOP

algorithm.

Corollary. After running the TSOP algorithm each feasible solution of the OP

problem is visited at least once and at most v+1 times. More precisely the number of

distinct solutions visited exactly k times by the TSOP algorithm can be generated by the

following formula:

F(1) = C(r-1, v-1) k = 1

F(k) = C(r-k, v-k+2) for 1 < k < v+1;

F(k) = C(r-k, v-k+2)+1 for k = v+1;

For v = r –1, F(1) = C(r-1, v-1); F(k) = 0 for 1 < k < v+1; F(r) = 1.

where C(r, v) = r! / p!(r-p)! with the convention that C(r, v) = 0 if v > r.

Note the dimension of F is equal to v+1. The total number of solutions visted by TSOP

algorithm is equal to 2*C(r, v) – 1, that is two times the size of the feasible set but one.

Property D. Property C is also true when the OP problem is instead formulated with

constraints (3) and (4) redundant, but with the additional constraint that each P is the

index set for a base of matroid.

Property E. Property A is also true when (4) is redundant and (3) takes the form for a

general 0-1 IP problem identified in Section 2, with the addition of constraints that define

a multidimensional knapsack problem or that define a generalized covering problem.

5. A Dynamic Tabu List Version

The most effective forms of tabu search use dynamic tabu lists. (See, e.g., Taillard

(1990); Chakrapani and Skorin-Karpov (1993); Gendreau, Soriano and Salvail (1993);

Hansen and Jaumard (1990).) One of the forms of dynamic tabu lists that has proved

Chapter-Glover-Hanafi-TSOP-2011 16 19/09/11

particularly effective defers the assignment (Hübscher and Glover, 1994), as applied in the

studies of Dammeyer and Voss (1993); Voss (1996) and Hanafi and Fréville (2001). We

show how this idea can be used to create a more advanced and flexible version of the

specialized approach of Section 4.

To handle this change, we allow the tabu list to include pairs of elements (p, q) instead

of a succession of single elements (selected as one of p or q at each step). The appearance

of a paired element (p, q) on tabu_list means that the choice of the element p or q to be

tabu has been deferred, and we will thus refer to components of such pairs as deferred

tabu elements. An element p or q that becomes a singleton on tabu_list (by deleting the

other element according to rules subsequently identified), is considered tabu in the usual

sense and is called an active tabu element.

When a pair (p, q) is on tabu_list, with both p and q deferred tabu elements, it is

possible to choose a move in the future that contains either p or q (but not both), i.e., to

choose a move represented by a pair of the form (z, p) or (q, z), excluding z = q or p,

respectively. By contrast, in the earlier procedure where only p or q is placed on the tabu

list, one of these two types of future moves is automatically eliminated and there is no

opportunity to choose between them.

The operation of deferred tabu status applies likewise to underlined elements. The

appearance of underlined pair of elements on tabu_list signals that each member of the

pair has a deferred tabu status, and that it will become an ordinary (single) underlined

element once its status becomes active. (It is entirely possible, however, that an element

will never change from a deferred status to an active status.)

When a move (p, q) is selected, the pair (q, p) (rather than the pair (p, q) is added to

tabu_list, just as it is added to weak_tabu_list. The operation of underlining such a pair (q,

p) on tabu_list is accompanied by replacing it on tabu_list in reverse as (p, q). (This

convention is not strictly necessary, because the current composition of P and Q always

identifies which member of a pair belongs to P and which belongs to Q, without bothering

to order these elements. However, to avoid ambiguity in our description, we keep the

ordering explicit.) Single elements on tabu_list are treated exactly as before.

By these conventions, last(tabu_list) can either be an order pair or a singleton, and

similarly underline_end can include both ordered pairs and singletons. An ordered pair (p,

q) on tabu_list becomes a singleton p or q by executing a move of the form (z, q) or (p, z),

Chapter-Glover-Hanafi-TSOP-2011 17 19/09/11

respectively. The resulting p or q is underlined according to whether (p, q) was

underlined.

These prescriptions lead to the following modified form of the TS-OP method.

Dynamic TS-OP Method.

0. Start with an initial feasible pair P and Q. Let tabu_list and weak_tabu_list both

being empty, and let the depth d = 0. Also let P* = P and Q* = Q, identifying the

best current known solution.

1. Choose a pair (p, q) satisfying p  P and q  Q, where p, q and the pair (p, q) are

not tabu, such that exchanging p and q between P and Q will create a new feasible

solution. Then, if such a pair is found, set

P = P – p + q

Q = Q – q + p

tabu_list = tabu_list + (q, p)

weak_tabu_list = weak_tabu_list + (q, p)

d = d + 1.

If there is a pair (p, y) on tabu_list, replace (p, y) by y, and if there is a pair (z, q) on

tabu_list, replace (z, q) by z (where y and / or z is underlined if the pair that contained it

was underlined). Finally, if now f(P, Q) < f(P*, Q*), set P* = P and Q* = Q.

2. If no pair (p, q) can be found to satisfy the conditions in Step 1: terminate if d = 0

(or equivalently if weak_tabu_list is empty); otherwise let (q, p) =

last(weak_tabu_list), and set

P = P + p - q

Q = Q + q - p

tabu_list = tabu_list – underline_end

weak_tabu_list = weak_tabu_list - (q, p)

d = d - 1.

If last(tabu_list) is the ordered pair (q, p) (rather than a singleton) : set tabu_list =

tabu_list - (q, p) + (p, q) underline the current element last(tabu_list) (which is either p or

q or the pair (p, q)).

3. After executing Step 1 or Step 2, return to the start of Step 1.

Chapter-Glover-Hanafi-TSOP-2011 18 19/09/11

We observe that weak_tabu_list can be absorbed into tabu_list in the foregoing

procedure, if we do not eliminate elements of ordered pairs to produce singletons, but

instead simply “mark” elements that would correspond to such singletons to establish their

tabu status. Then the pair (q, p) taken from weak_tabu_list in step 2 may be identified as

the pair that appears as last(tabu_list), after removing underline_end in Step 2 (where one

of q or p may be marked element).

The operation of identifying a pair (p, y) or (z, q) in Step 1 is greatly simplified, and

can be executed as a “look up” rather that a search, due to the fact that, for any element p

and any element q, at most one pair (y, p) and at most one pair (z, q) can be on tabu_list.

This useful relationship is a direct consequence of the organization of the procedure and

the results established in Section 3.

References

Chakrapani, J. and J. Skorin-Kapov (1993). Massively Parallel Tabu Search for the Quadratic

Assignment Problem. Annals of Operations Research, 41, 327–341.

Dammeyer F., S. Voss, (1993), "Dynamic Tabu List Management using the Reverse

Elimination Method", Annals of Operations Research, 41, 31-46.

Gendreau M., P. Soriano and L. Salvail, (1993). Solving the maximum clique problem using a

tabu search approach. Annals of Operations Research, 41, 385-404.

Glover F., (1965). A Multiphase-Dual Algorithm for the Zero-One Integer Programming

Problem. Operations Research, Vol. 13, No. 6, 879-919.

Glover F., (1990). Tabu Search, Part 2. ORSA Journal on Computing 2, 4-32.

Glover F. and Greenberg, H.J., (1989). New approaches for heuristic search: A bilateral

linkage with artificial intelligence. European Journal of Operational Research, Volume 39,

Issue 2, 24 March, 119-130.

Glover F., S. Hanafi, (2002). Tabu Search and Finite Convergence. Special Issue on

“Foundations of heuristics in Combinatorial Optimization”. Discrete Applied Mathematics,

119, 3-36.

Glover F., M. Laguna, (1997), Tabu Search, Kluwer Academic Publishers.

Hanafi S., (2000). On the Convergence of Tabu Search. Journal Of Heuristics, 7, 47-58.

Hanafi S., A. Fréville, (2001). Extension of Reverse Elimination Method Through a Dynamic

Management of the Tabu List. RAIRO Oper. Res. 35, 251-267.

http://www.sciencedirect.com.gate6.inist.fr/science/journal/03772217
http://www.sciencedirect.com.gate6.inist.fr/science?_ob=PublicationURL&_tockey=%23TOC%235963%231989%23999609997%23432417%23FLP%23&_cdi=5963&_pubType=J&view=c&_auth=y&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=f21fcc6740d22df53df5346eba59dab3
http://www.sciencedirect.com.gate6.inist.fr/science?_ob=PublicationURL&_tockey=%23TOC%235963%231989%23999609997%23432417%23FLP%23&_cdi=5963&_pubType=J&view=c&_auth=y&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=f21fcc6740d22df53df5346eba59dab3

Chapter-Glover-Hanafi-TSOP-2011 19 19/09/11

Hansen P. and B. Jaumard, (1990). Algorithms for the maximum satisfiability problem.

Computing 44, 279-303.

Hübscher R., F. Glover, (1994). Applying Tabu Search with influential diversification to

multiprocessor scheduling. Computer and Operations Research, 13, 877-884.

Taillard E., (1990). Some efficient heuristic methods for the flowshop sequencing problem.

European Journal of Operational Research, 47, 65-74.

Voss S., (1996). Dynamic tabu search strategies for the traveling purchaser problem. Annals

of Operations Research 63, 253-275.

http://www.sciencedirect.com.gate6.inist.fr/science/journal/03772217

Chapter-Glover-Hanafi-TSOP-2011 20 19/09/11

Appendix : A bounded Formulation

We show how v can be replaced by upper and lower bounds, u0 and l0, so that (2) and

(2’) of Section 2 translate respectively into the more general requirements u0  |P|  l0 and

u0  
Rj

jx  l0. (First, note these constraints take the form of (3) and (3’) by defining R0

= R, replacing P by P inter R0 and replacing R by R0. More precisely, to encompass the

inequalities in which u0 and l0 replace v, let R’ = {1, …, r’} denote the “original R” over

which such inequalities apply. Then we obtain an initial “corresponding” OP formulation

by setting v = u0 and by making reference to a different R, R = {1, …, r} where r = r’+ (u0

– l0).

Without further change, this gives a loose equivalence, where feasible solutions of the

original problem are included multiple times among feasible solutions of the new

problem. That is, every solution of the new problem that includes within P a given number

of the elements from the set {r’ + 1, …, r} corresponds to just one solution to the original

problem defined over R’. To eliminate this multiple counting and give a one-one

correspondence between solutions of the two problems, we make use of the constraints of

(4) by defining an additional set R(K + 1) = {r’ + 1, …, r}, and an associated set of

ordered pairs O(K + 1) = (j, j + 1) where j and j + 1 range over the elements of R(K + 1).

In the 0-1 IP formulation this corresponds to specifying xj+1  xj for each j, j+1 over this

set. Hence if exactly one element of this set is chosen to belong to P (setting xj = 1 for this

element) it must uniquely be the elements r and r – 1, etc. This gives the desired one-one

mapping between solutions of the original and the new formulations. (In case u0 = l0 + 1,

we note there are no precedence constraints to include in the new formulation.)

The device for formulating the OP problem as a 0-1 IP problem can be extended

directly to formulate a problem in which each xk takes any one of a set values, letting xj be

a 0-1 variable associated with xk where j ranges over the elements of Pk = {k, k+K, ….}. if

we include a dummy value for xk represented by xk = *, which is interpreted as the case

where xk is not assigned a value, then the rules of the OP method in Section 3 give

precisely the type of tree search produced by a branch and bound algorithm for a standard

IP problem. (Thus implicitly it generates mores solutions than when the value xk = * is

excluded, though in terms of overall computational complexity this is a trivial difference.)

