
Appl Intell
DOI 10.1007/s10489-017-0901-8

Adaptive pattern search for large-scale optimization

Vincent Gardeux1 ·Mahamed G. H. Omran2 ·Rachid Chelouah1 · Patrick Siarry3 ·
Fred Glover4

© Springer Science+Business Media New York 2017

Abstract The emergence of high-dimensional data requires
the design of new optimization methods. Indeed, con-
ventional optimization methods require improvements,
hybridization, or parameter tuning in order to operate in
spaces of high dimensions. In this paper, we present a new
adaptive variant of a pattern search algorithm to solve global
optimization problems exhibiting such a character. The pro-
posed method has no parameters visible to the user and the
default settings, determined by almost no a priori exper-
imentation, are highly robust on the tested datasets. The
algorithm is evaluated and compared with 11 state-of-the-
art methods on 20 benchmark functions of 1000 dimensions
from the CEC’2010 competition. The results show that this
approach obtains good performances compared to the other
methods tested.

Electronic supplementary material The online version of this
article (doi:10.1007/s10489-017-0901-8) contains supplementary
material, which is available to authorized users.

� Vincent Gardeux
vincent.gardeux@eisti.eu

1 Department of Computer Science, EISTI Engineering School,
Cergy, France

2 Department of Computer Science, Gulf University for Science
& Technology, Kuwait City, Kuwait

3 LiSSi Laboratory, University of Paris-Est Creteil, Creteil,
France

4 Leeds School of Business, University of Colorado, Boulder,
CO, USA

Keywords Pattern search · Scatter search · Optimization ·
Continuous · High-dimension · Large-scale · Adaptive
methods

1 Introduction

Many optimization algorithms have been proposed for solv-
ing the continuous function optimization problem:

(P) Min f (x) : xmin ≤ x ≤ xmax

The vector x = (x1, . . . , xD) is composed of D real-valued
variables, and the vectors xmin and xmax are assumed finite
and to satisfy xmin < xmax . Here we address in particu-
lar the so-called “black-box problems” where the algebraic
model of f and its derivatives are not available. Direct
search methods are designed for this class of problems since
they neither compute nor explicitly approximate derivatives
of f . Unfortunately, most of the current optimization meth-
ods cannot solve (P) in a decent time when it is scaled
for a high number of dimensions (e.g. D > 100); their
performance degrades as D increases. For example, tradi-
tional bio-inspired algorithms [1], such as Particle Swarm
Optimization [2], or Genetic Algorithms [3] are only capa-
ble of handling low dimensional problems, mainly because
of the curse of dimensionality [4]. However, large scale
optimization problems (continuous and discrete) are widely
studied in science and engineering, and this trend is now
reinforced with the emergence of Biocomputing, Data Min-
ing, and Big Data [5, 6]. For example, in bioinformatics it
is common to consider gene expressions, protein binding
affinities or genetic variants as continuous features across
multiple samples. These features are then used to build
prediction models [7, 8], perform feature selection [9, 10]

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-0901-8&domain=pdf
http://dx.doi.org/10.1007/s10489-017-0901-8
mailto:vincent.gardeux@eisti.eu


V. Gardeux et al.

(for e.g. using Estimation of Distribution Algorithms [11–
13]), search for substructures of gene/protein networks [14],
or perform clustering [15, 16]. Optimization techniques can
be used to perform these tasks, but require to be scaled
up since several species have tens of thousands of genes
which translate into tens of thousands of decision variables
[17, 18]. Such applications and many others demonstrate
the growing need for optimization methods that are able to
solve high-dimensional problems.

Some practical optimization problems are “computa-
tionally expensive” independent of their size. Some meth-
ods are specifically designed to tackle this category of
problems [19, 20]. However, these problems are different
from the ones at the focus of this study. Computation-
ally expensive problems, in the sense discussed here, arise
in settings where it is necessary to employ very specific
time-consuming functions, causing each evaluation of the
objective function to be time expensive. Methods for such
problems are compelled to restrict the number of calls and
rely on the hope of obtaining a good candidate solution in
few evaluations. Consequently, such methods are usually
not designed to achieve progressively better results when
they are run for a high number of function evaluations. In
the case of large scale global optimization (LSGO) at the
focus of this paper, the evaluation of the objective function
is not so time consuming that it limits the quest for solutions
of especially high quality. Rather, the difficulty posed by
LSGO problems resides in the high number of dimensions,
since solution methods for such problems should be tuned
for each variable. This leads to the curse of dimensionality
mentioned earlier.

Several optimization methods have been proposed to solve
LSGO problems (refer to Section 4 for a list of state-of-
the-art methods). Most of them are hybrids or adaptations
of existing low-dimensional optimization procedures [21–
28]. Others automatically or manually tune the parameters
of existing methods to work with high dimensional costs
[29–31]. For example, Masegosa et al. have proposed a cen-
tralized cooperative strategy where a set of trajectory-based
methods is controlled by a rule-driven coordinator [32]. Li et
al. have proposed a cooperative coevolving particle swarm
optimization algorithm where Cauchy and normal distribution
are used to sample new points in the search space [33].

At the time of this writing, a special issue of the Infor-
mation Science journal has appeared that is specifically
dedicated to nature-inspired methods for solving LSGO
problems [34]. A few of the articles in this issue are par-
ticularly notable, and are worth mentioing. One is a novel
“dimension reduction” technique, which can be applied
to the problem before performing the optimization [35].
Another is an Evolutionary Compact Embedding (ECE)

method applied to large scale image classification that uses
boosting for iteratively improving the results of a genetic
programming scheme [36]. These dimension reduction
methods can indeed be very important to consider in certain
engineering and statistical applications, but we observe that
they may not always be applicable to a particular problem.
Other methods relying on the same principle have also been
recently developed, such as the Large Scale optimization
with Autoencoders (LASCA) which uses autoencoders as a
reversible mapping between the original search space and
a reduced space [37]. This approach can be applied more
generally to many problems and can use any metaheuristic
to perform the optimization on the reduced space, while the
objective function is assessed in the original space. How-
ever, it raises an issue about the tradeoff between time spent
on dimension reduction and extra time allowed to solve the
problem, and is not concerned with this matter (or with
the question of whether dimension reduction might lead
to improved solutions). In addition, in the indicated spe-
cial issue, 10 algorithms were compared on many different
LSGO benchmarks, disclosing that the results may vary
widely from one benchmark to another, thus raising the “no
free lunch” question [38]. Indeed, even if some methods
can be more general than others in solving LSGO problems,
each method is expected to perform very well only for a cer-
tain class of problems in the recognition that a global best
solving algorithm may not exist.

In this paper we propose an extended variant of the
Enhanced Unidimensional Search (EUS) [39], which was
directly inspired by Pattern Search methods and has been
shown to be effective for operating in high-dimensional
spaces. The new method, called adaptive EUS (aEUS)
requires no tuning and has few parameters (ideally, none
that are visible to the user). We have evaluated aEUS on a
suite of 20 scalable functions and compared it to 11 state-of-
the-art algorithms designed for high-dimensional problems.
aEUS is freely available at http://gardeux-vincent.eu/aEUS.
php (MATLAB and Java source code).

2 Pattern Search

Pattern Search methods constitute a category of local search
algorithms supported by solid convergence proofs [40–42].
They operate by the principle of evaluating the objective
function iteratively in a “stencil-based” manner. The size of
the stencil is modified as iterations proceed, which leads to
convergence as the stencil tends towards 0. Several methods
have issued from this basic principle including the Coor-
dinate Descent (or Compass Search) [43] and the original
Hooke-Jeeves Direct Search algorithm [44]. The Enhanced

http://gardeux-vincent.eu/aEUS.php
http://gardeux-vincent.eu/aEUS.php


Adaptive pattern search for large-scale optimization

Unidimensional Search (EUS) [39] is directly inspired by
this principle and constitutes an adaptive line search algo-
rithm which examines one dimension at a time. EUS does
not thoroughly minimize the objective function at each iter-
ation, and is adapted for global search. The method is easy
to implement, designed to quickly locate the local optimum
and is particularly efficient in handling high-dimensional
problems. It was initially developed and compared to other
state-of-the-art methods during the SOCO challenge [45].

EUS starts from a randomly-generated initial solution
x. For initializing the size of the “stencil”, a difference
(“delta”) vector h is created and initialized by setting h =
xmax − xmin. The method successively focuses on a single
variable xi , i ∈ {1, 2, . . . , D}, and selects the best neigh-
bor from the three alternatives x, xu = x + hi êi and xd =
x−hi êi , where êi is the unit vector with a value 1 in position
i and 0’s elsewhere. Since the search space is bounded, the
computed values are always constrained within the search
space limits [xmin, xmax]. The search then updates x to be
the best of the three alternatives (x, xu, and xd ), hence
setting x = arg min(f (x) , f

(
x + hi êi

)
, f

(
x − hi êi

)
).

Then, successive dimensions i are treated in the same man-
ner. At the conclusion of an iteration, if the solution has
not been improved along at least one dimension, then h is
multiplied by a ratio R fixed to 0.5, therefore reducing the
size of the components hi of h. The choice of R = 0.5 is
very typical in Pattern Search techniques as it corresponds
to decreasing the step size by half. The hi values continue
to shrink in this fashion until h < hmin, where the latter is a
vector of constants all fixed to 1.00E-15. Therefore, an itera-
tion of the algorithm consists of scanning every dimension i

successively from 1 to D and search for the best of the three
alternatives on each dimension. Not all of the 2D possible
solutions are investigated, as EUS does not apply a thor-
ough search on each dimension but improves the solution by
small steps at a time. Consequently, each iteration consists
of 2D evaluations of the objective function, since for each
dimension, both solutions f

(
x − hi êi

)
and f

(
x + hi êi

)

are investigated. This model is close to the “opportunis-
tic polling” scheme for Pattern Search algorithms, which is
designed to alleviate the curse of dimensionality character-
izing high-dimensional problems [39]. The main difference
between opportunistic polling and the corresponding por-
tion of our approach is that EUS always evaluates both of the
solutions f

(
x − hi êi

)
and f

(
x + hi êi

)
while opportunistic

polling skips the second solution if the first is already better
than f (x). Also, since pattern search methods are origi-
nally used to perform local search, EUS goes a step farther
to improve its operation by a guided restart mechanism that
keeps the best solutions found so far and re-initializes h to a
new starting value after reaching the termination point given

by h < hmin. Therefore, increasing the vector hmin may
increase the potential number of restarts of the algorithm,
but tends to decrease the error accuracy. Every solution
found after reaching this termination point is called a local
optimum and added to a reference set following the design
of Scatter Search (see, e.g., [46]). In order to better explore
the search space, when the restart procedure is activated, a
new solution is generated that lies far from this reference
set. This technique uses a diversification generation method
based on the Scatter Search algorithm that generates a col-
lection of diverse trial solutions and selects the one farthest
from a reference set of previously visited local optima—
i.e. the one that maximizes the minimum distance from the
solutions within this set.

3 Adaptive pattern search

The adaptive EUS (aEUS) algorithm relies on the same prin-
ciples as EUS, i.e. optimizing the solution by small steps
on each dimension successively, in order to alleviate the
curse of dimensionality. Each step focuses on a single vari-
able xi , i ∈ {1, 2, . . . , D}, and selects the best neighbor
from the three alternatives x, xu and xd as described in
Section 2. In contrast to the original EUS method, aEUS
does not scan all dimensions at each iteration. Instead it
uses a dimension winnowing approach [47, 48] where each
iteration scans a set of dimensions N0 starting with N0 =
N = {1, 2, . . . , D} and then removes these dimensions over
which the line search yields no improvement during the cur-
rent iteration. Each successive iteration inherits the reduced
N0 bequeathed by its predecessor until N0 becomes empty.
The dimension winnowing process is a candidate list strat-
egy motivated by the goal of accelerating computation -
using a drop-the-losers strategy (which discards variables as
soon as they are found to yield no improvement). We define
a pass to be a series of iterations that starts from the full set
of dimensions N0 = N = {1, 2, . . . , D} and proceeds until
N0 = ∅. At the conclusion of each pass, h is updated by set-
ting h = h ∗ R and the next pass commences by once again
setting N0 = N .

In EUS, as previously noted, the ratio R was a param-
eter fixed to 0.5 which served to refine the coarse grain
of the search by reducing the value of h when no more
improvements of the result could be made Additional exper-
iments with EUS showed that if this coefficient was selected
randomly after each iteration, the algorithm could occasion-
ally become trapped in a local optimum. Further analysis
showed that in these “bad” case scenarios the solution was
continuing to improve, but too slowly to be able to reach
the optimum in decent time. Even the simplest function



V. Gardeux et al.

Sphere could fail to reach its optimum, which implies that
a guided and smart decrease of the h vector was required.
However, still later experiments with EUS have shown that
in some particular cases, this average value could be dynam-
ically changed for improved performance. Consequently, in
aEUS, we made this parameter adaptive, by using a param-
eter decay technique for updating R inspired by Simulated
Annealing [49], though we use the decay process in a differ-
ent fashion and for a different purpose. We set a temperature
variable T to D at the beginning of the simulation, and
decreased T after each unsuccessful pass. The ratio R is
then dynamically calculated depending on T by a factor

of e− T
D . This allows the R value to decrease and stabilize

smoothly, in order to accelerate the descent to the local
optimum at each unsuccessful pass, but decreases R by a
progressively smaller amount at each iteration

Moreover, in aEUS the restart procedure has been sim-
plified, as well as the triggering criterion. The method does
not jump to a newly generated solution but keeps the cur-
rent solution and resets the h, T and R values. Despite
the fact that this behavior tends to constrain the solution
to a local optimum, this behavior was preferred in order
to better refine existing solutions. Moreover, we found
experimentally that in some cases the re-initialization of
the parameters was enough to jump out of a local opti-
mum, since the initial values were big enough to allow an
extensive scanning of the search space.

The restart procedure is triggered if two successive
passes give no improvement, as follows:

h = (xmax − xmin) ∗ rand

T = D

R = rand

where rand is a randomly generated number from the inter-
val [0,1]. Of note, the random generator is called twice for
resetting h and R, hence the two rand values should be
different. Moreover, since R is a ratio used for decreasing
the h convergence vector, it should be taken from the inter-
val ]0,1[. A value of 1 would make the search stationary.
The bigger the value, the slower will be the convergence We
specifically chose 0.9 as initial value in order to have at least
one pass with a slow convergence rate. For the same rea-
sons, we fixed the initial h value to the maximum allowed
one (xmax − xmin). The use of the random generator for
the restart procedure helps generating diversity, and avoids
falling in the same local optimum. Of note, we observed
that the elements of N0 could be processed in sequential or
random order without any impact on the results.

The pseudo-code of the aEUS algorithm is shown in
Algorithm 1. The stopping criterion is defined as reaching a
chosen maximum number of function evaluations.

4 Experimental setup

To test the performance of the proposed method, we chose
a benchmark (see Omidvar et al. for best benchmark
practice [50]) of 20 scalable functions provided for the
CEC’2010 Special Session and Competition on Large-Scale
Global Optimization [51]. It consists of separable, partially-
separable and non-separable functions of dimension D =



Adaptive pattern search for large-scale optimization

1000. All functions are derived from the sphere, elliptic,
Schwefel’s problem 1.2, Rosenbrock, Rastrigin and Ack-
ley’s functions. Table 1 summarizes the main properties of
the benchmark functions.

A control parameter m = 50 is used to define the degree
of “separability” of a given function. For all the bench-
mark functions we have used three different “time points” of
function evaluations (FEs) to evaluate the performances of
our algorithm: 1.2E5, 6.0E5 and 3.0E6. The error measure
is defined as the absolute difference between the best-of-
run f (x∗) value and the actual optimum f (x′) of a given
function: err. = ∣∣f (x∗)−f (x′)

∣∣. Optima for all the func-
tions are known by construction. The fact that the optimum
value of every function is 0D explains why all the functions
are shifted. These optima are provided by the benchmark
to compute error values, but they are not used during the
optimization process. The optimization always adopts the
objective of minimizing the objective value. Moreover, the
optimization is considered to be a black-box operation and
thus neither the algebraic model of f nor its derivatives are
available during the computation.

The proposed method was compared with EUS, as well
as 10 state-of-the-art methods published along with the
CEC’2010 conference. These methods are listed below:

1) DECC-G: Group size s = 100 [52]
2) DECC-G*: Same as DECC-G, except that the group-

ing structure was used as prior knowledge (group size
s = 50) [52]

3) Multilevel Cooperative Coevolution (MLCC) [53]
4) Differential Ant-Stigmergy Algorithm (DASA, C-

7136) [54]
5) Sequential DE Enhanced by Neighborhood Search

(SDENS, C-7273) [55]
6) Two-stage based Ensemble Optimization (EOEA, C-

7306) [56]
7) Memetic Algorithm Based on Local Search Chains

(MA-SW-Chains, C-7330) [57]
8) Self-adaptive Differential Evolution Algorithm

(jDElsgo, C-7392) [58]
9) Cooperative Co-evolution with Delta Grouping

(DECC-DML, C-7597) [50]
10) Dynamic Multi-Swarm Particle Swarm Optimizer

with Subregional Harmony Search (DMS-PSO-SHS,
C-7938) [59]

11) Enhanced Unidimensional Search (EUS) [39]

Methods 1, 2, 5, and 8 are adaptations of the Differen-
tial Evolution algorithm, which is known to perform well
on large-scale problems [60]. Algorithms 1, 2, 3, and 9
are more specifically based on the Cooperative Coevolu-
tion scheme [61], which partitions the problem into multiple
evolutionary sub-problems and then optimizes them sepa-
rately. Algorithms 4 and 10 are based on Swarm algorithms,
respectively consisting of Ant Colony Optimization [62]
and Particle Swarm Optimization [2, 63]. They were specif-
ically adapted for high-dimension optimization. Additional
details about each method can be found in the papers cited.

Table 1 Properties of the
benchmark functions Function Name Separable

F1 Shifted elliptic Yes

F2 Shifted Rastrigin Yes

F3 Shifted Ackley Yes

F4 Single-group shifted and m-rotated elliptic function Partially

F5 Single-group shifted and m-rotated Rastrigins function Partially

F6 Single-group shifted and m-rotated Ackleys function Partially

F7 Single-group shifted m-dimensional Schwefel’s problem 1.2 Partially

F8 Single-group shifted m-dimensional Rosenbrocks function Partially

F9 D/(2m) group shifted and m-rotated elliptic function Partially

F10 D/(2m) group shifted and m-rotated Rastrigins function Partially

F11 D/(2m) group shifted and m-rotated Ackleys function Partially

F12 D/(2m) group shifted m-dimensional Schwefel’s problem 1.2 Partially

F13 D/(2m) group shifted m-dimensional Rosenbrocks function Partially

F14 D/(m) group shifted and m-rotated elliptic function Partially

F15 D/(m) group shifted and m-rotated Rastrigins function Partially

F16 D/(m) group shifted and m-rotated Ackleys function Partially

F17 D/(m) group shifted m-dimensional Schwefel’s problem 1.2 Partially

F18 D/(m) group shifted m-dimensional Rosenbrocks function Partially

F19 Shifted Schwefel’s problem 1.2 No

F20 Shifted Rosenbrock No



V. Gardeux et al.

The above 11 methods were applied on the 20 bench-
mark functions using the experimental settings described
in CEC’2010 [51]. We gathered the published average
errors from the 10 first methods for comparison with aEUS
without recomputing them.

We also performed a comparison with the Pattern Search
method that is closest in conception to EUS: the coordi-
nate descent (also called compass search). This method is
designed for local search only, and thus we used two ver-
sions in order to provide a fair comparison: (1) using the
original algorithm (the C algorithm provided by [43]), and
(2) adding the same restart procedure used by EUS. The
results including the restart procedure are reported in Sup-
plement Table S1. The results of the original algorithm are
not shown because they were either similar or worse on
every function, compared to the second variant (that uses
our restart procedure). Supplement Table S1 shows that F1
was not solved when D = 1000, although it is one of the eas-
iest functions (F1 is separable and unimodal). Of note, the
coordinate descent algorithm managed to solve F1 with a
good precision when D ≤ 500 (data not shown) but seems to
converge too slowly for higher dimensions, thus exhibiting
a scalability problem. Since the algorithm was not capable
of coping with the increase in dimensionality, we did not
include it in the remaining analyses.

We also compared aEUS results with a more extended
Pattern Search method called PSwarm [64]. This algo-
rithm combines Particle Swarm Optimization (PSO) [2] for
exploring the search space with the Pattern Search technique
for performing local search. PSwarm was not specifically
designed for large-scale optimization but, similarly to EUS
and aEUS, it uses a variant of opportunistic polling. PSwarm
was downloaded in Matlab from the authors’ website. Con-
trary to the other methods, we ran PSwarm for only 5 runs
(instead of 25) on function F1, but we kept the other set-
tings. We applied this modified protocol for two reasons: (1)
PSwarm requires ∼28 h for running 3E6 FEs of function F1
(for only 1 run), compared to aEUS which requires only 15 s
under the same conditions, and (2) the results of PSwarm
on F1 were not good enough to qualify it for considera-
tion in the rest of this study (average error = 3.61E08). For
these two reasons, we did not include further results from
PSwarm.

Taken together, the results of PSwarm and the coordinate
descent show that conventional Pattern Search techniques
must be adapted in order to provide a method capable
of effectively handling large-scale problems. We structure
aEUS to overcome the limitation of these conventional tech-
niques by using a very stringent form of the opportunistic
polling scheme which is reinforced with the “dimension
winnowing” approach of [46, 47]. The results obtained
by the two Pattern Search algorithms we have used for

comparison should be interpreted by recognizing that both
methods are not initially designed for large-scale problems.

5 Results and discussion

5.1 aEUS results

The best, median, worst, mean errors and standard devia-
tions obtained by the aEUS algorithm on each function are
shown in Table 2. The mean error values are computed for
25 runs and are reported for each of the 20 functions.

Table 2 shows that aEUS solved the three first sepa-
rable functions easily. This behavior is expected from a
method that optimizes each dimension successively, and
thus the results are concordant with prior experience. Non-
separable functions F19 and F20, in the contrary, are less
well solved by our approach. However, the other algo-
rithms also encounter difficulties on those functions (see the
complete result table provided as Supp. File 1). In partic-
ular, it is worth noting that aEUS obtains the best results
over all methods for function F19 and second best (after
DMS-PSO-SHS) for F20.

Another interesting feature of aEUS is its very quick con-
vergence. On many functions, the best value is found early
(D = 1.2E5). Despite the fact that aEUS is ranked in the
top-3 methods for 11 functions through 20, it has visible
shortcomings for functions F6 (rank 10th), F11 (rank 7th)
and F16 (rank 8th) at D = 1000. Interestingly, these func-
tions all correspond to variants of Ackley’s function, which
implies that this function is particularly resistant to solution
by aEUS, as was also the case for EUS. We hypothesize that
the cause stems from the nature of Ackley’s function, which
consists of a very flat landscape with many local optima.
aEUS and its local scheme is probably trapped too many
times in local optima before having a chance to reach the
global optimum. It is also worth noting that aEUS performs
globally equally or better than EUS over each function. This
confirms the enhancement brought by the adaptive method
we present in this paper.

5.2 aEUS vs. other state-of-the-art methods

The aEUS method was compared with the 11 methods listed
in Section 4. Table 3 shows the average rank of aEUS com-
pared to the other 11 methods for each function and for
each FEs cutoff. It was computed by first averaging the
error values over the 25 runs for every function. Then every
method was ranked based on this average error and the aver-
age rank was computed across all functions. Table 3 reports
this average rank for every FEs time point. MA-SW-Chains
and aEUS are the two best methods for early convergence



Adaptive pattern search for large-scale optimization

Table 2 Results of aEUS on CEC’2010 functions for 25 independent runs with 1000 dimensions

D = 1000 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1.2E5 Best 1.95E-11 0.00E+00 8.09E-09 9.46E+12 6.11E+07 1.97E+07 7.91E+09 2.77E+07 2.98E+08 6.25E+03

Median 2.30E-11 0.00E+00 8.32E-09 1.90E+13 7.11E+07 1.99E+07 2.33E+10 3.97E+08 3.68E+08 7.20E+03

Worst 2.85E-10 0.00E+00 2.84E-08 3.96E+13 9.48E+07 2.01E+07 7.43E+10 8.75E+09 5.36E+08 7.87E+03

Mean 6.31E-11 0.00E+00 1.54E-08 2.09E+13 7.18E+07 1.99E+07 2.72E+10 1.26E+09 3.73E+08 7.15E+03

StDev 2.16E-19 0.00E+00 2.28E-15 1.25E+27 1.26E+17 1.58E+11 5.55E+21 8.31E+19 6.07E+16 3.32E+06

6.0E5 Best 3.56E-24 0.00E+00 1.80E-12 1.21E+12 6.11E+07 1.97E+07 2.34E+07 1.38E+07 3.17E+07 6.25E+03

Median 8.05E-24 0.00E+00 1.89E-12 2.38E+12 7.11E+07 1.99E+07 4.55E+08 9.46E+07 4.22E+07 7.20E+03

Worst 1.44E-23 0.00E+00 1.99E-12 5.09E+12 9.48E+07 2.01E+07 3.16E+09 1.42E+09 5.13E+07 7.87E+03

Mean 8.32E-24 0.00E+00 1.90E-12 2.67E+12 7.18E+07 1.99E+07 8.23E+08 2.42E+08 4.18E+07 7.15E+03

StDev 1.60E-46 0.00E+00 5.08E-26 3.83E+25 1.26E+17 1.58E+11 1.67E+19 2.94E+18 4.89E+14 3.33E+06

3.0E6 Best 3.56E-24 0.00E+00 1.80E-12 1.32E+11 6.11E+07 1.97E+07 1.92E+01 2.20E+03 6.28E+06 6.25E+03

Median 8.05E-24 0.00E+00 1.89E-12 2.41E+11 7.11E+07 1.99E+07 1.02E+03 4.42E+07 7.63E+06 7.20E+03

Worst 1.44E-23 0.00E+00 1.99E-12 7.08E+11 9.48E+07 2.01E+07 1.61E+04 1.04E+09 8.51E+06 7.87E+03

Mean 8.32E-24 0.00E+00 1.90E-12 2.84E+11 7.18E+07 1.99E+07 2.73E+03 1.29E+08 7.57E+06 7.15E+03

StDev 1.60E-46 0.00E+00 5.08E-26 4.26E+23 1.26E+17 1.58E+11 4.63E+08 1.21E+18 6.48E+12 3.33E+06

D=1000 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

1.2E5 Best 1.98E+02 2.27E+05 4.53E+03 7.47E+08 1.29E+04 3.82E+02 7.59E+05 1.24E+04 1.59E+07 1.74E+03

Median 1.99E+02 3.73E+05 9.54E+03 9.27E+08 1.43E+04 3.98E+02 1.15E+06 3.35E+04 3.47E+07 1.97E+03

Worst 2.00E+02 6.14E+05 2.48E+04 1.37E+09 1.50E+04 3.99E+02 1.28E+06 6.10E+04 5.11E+07 5.50E+03

Mean 1.99E+02 3.97E+05 1.06E+04 9.52E+08 1.42E+04 3.98E+02 1.10E+06 3.51E+04 3.48E+07 2.54E+03

StDev 1.75E+00 2.45E+11 5.53E+08 4.54E+17 7.39E+06 2.71E+02 5.48E+11 3.59E+09 2.33E+15 3.63E+07

6.0E5 Best 1.98E+02 6.67E+03 1.36E+03 9.97E+07 1.29E+04 3.82E+02 2.87E+04 4.36E+03 1.67E+06 1.21E+03

Median 1.99E+02 1.44E+04 2.43E+03 1.22E+08 1.43E+04 3.98E+02 4.09E+04 1.62E+04 2.14E+06 1.40E+03

Worst 2.00E+02 1.91E+04 1.63E+04 1.56E+08 1.50E+04 3.99E+02 7.35E+04 4.77E+04 5.09E+06 1.63E+03

Mean 1.99E+02 1.45E+04 3.42E+03 1.24E+08 1.42E+04 3.98E+02 4.35E+04 1.81E+04 2.50E+06 1.43E+03

StDev 1.75E+00 2.06E+08 2.75E+08 5.25E+15 7.28E+06 2.71E+02 3.56E+09 2.87E+09 1.82E+13 4.10E+05

3.0E6 Best 1.98E+02 8.21E-02 1.38E+02 1.41E+07 1.29E+04 3.82E+02 1.67E+00 1.40E+03 7.66E+03 5.41E+00

Median 1.99E+02 2.54E-01 8.95E+02 1.71E+07 1.43E+04 3.98E+02 3.66E+00 2.68E+03 9.14E+03 3.98E+02

Worst 2.00E+02 9.44E-01 3.45E+03 1.96E+07 1.50E+04 3.99E+02 1.12E+01 5.25E+03 1.22E+04 9.69E+02

Mean 1.99E+02 3.28E-01 1.09E+03 1.71E+07 1.42E+04 3.98E+02 3.98E+00 2.97E+03 9.44E+03 4.51E+02

StDev 1.75E+00 1.46E+00 1.50E+07 4.08E+13 7.28E+06 2.71E+02 1.19E+02 3.60E+07 3.83E+07 1.21E+06

(FEs ≤ 6.0E5), and they both remain well ranked (respec-
tively third and fourth) at the end of the experiment
(FEs = 3.0E6).

We also performed a more global comparison between
aEUS, EUS and all the other methods presented at
the CEC’2010 conference. We used the same ranking
metric used for summarizing the results of the confer-
ence. It is a Formula 1 ranking system whose descrip-
tion is available on slide 6 of nical.ustc.edu.cn/wcci2010/
CompetitionSummary.pdf. In brief, it ranks each method for
each function result (mean error, variance, etc.), creates a
score for each rank (the better rank, the higher score) in each
condition, and sums them all. The results are available in
Supp. File 1, and are summarized in Table 4.

This table shows that overall aEUS is ranked second,
after MA-SW-Chains. This implies that our methodology
is able to solve not only separable problems, but also non-
separable ones, with competitive accuracy. The separable
problems alone are very well solved (see Section 5.1), in a
very few number of function evaluations.

Finally, we examined the global performances of the 11
algorithms using their respective performance profiles [65]
relative to the error posted by each method after 1.2E5,
6.0E5, and 3.0E6 evaluations of the objective function. That
is, for each method, we plot the fraction p of problems for
which the method is within a factor τ of the best-achieved
precision. Figure 1 shows the performance profiles of the 11
methods compared to aEUS and EUS. We have specifically

nical.ustc.edu.cn/wcci2010/CompetitionSummary.pdf
nical.ustc.edu.cn/wcci2010/CompetitionSummary.pdf


V. Gardeux et al.

Table 3 Average ranks of aEUS on CEC’2010 functions for 25
independent runs with 1000 dimensions

Method FEs = 1.2E5 FEs = 6.0E5 FEs = 3.0E6

Average rank Average rank Average rank

DECC-G No data No data 9.60
DECC-G* No data No data 5.30
MLCC No data No data 7.75
DASA 4.15 4.60 6.90
SDENS 7.10 7.45 9.10
EOEA 4.10 3.95 5.45
MA-SW-Chains 2.20 3.10 4.45
jDElsgo 7.60 6.55 4.35
DECC-DML 6.35 5.75 7.25
DMS-PSO-SHS 5.55 4.40 4.30
EUS 4.25 5.45 8.35
aEUS 3.65 3.70 5.05

Top 3 results for every FEs timepoint are bolded

highlighted the comparison with MA-SW-Chains, and more
results are plotted in Supp. Figure S1.

The Figure shows that all methods exhibit similar perfor-
mances on every function. In particular, for FEs = 1.2E5
and FEs = 6.0E5, it is clear that aEUS is the method that
yields the best precision on most problems. These outcomes
demonstrate that aEUS converges very quickly toward an
acceptable solution. This perception is further verified in
Supp. Table S2, where the Area Under the Curves (AUCs)
show that aEUS performs the best under these two condi-
tions. The curves also show that the aEUS curve dominates
the EUS curve. For FEs = 3.0E6, it is difficult to differen-
tiate between the methods visually. However, AUCs show
that aEUS performs comparably to MA-SW-Chains and
jDElsgo and is therefore one of the best methods.

We also performed a quick comparison with a more
recent method that improves the artificial bee algorithm

Table 4 Formula 1 scores of aEUS and the algorithms presented at
the CEC’2010 conference

Method Formula 1 score Rank

DASA 3455.00 5
SDENS 1768.00 9
EOEA 3844.00 3
MA-SW-Chains 4821.00 1
jDElsgo 2561.00 7
DECC-DML 2537.00 8
DMS-PSO-SHS 3602.00 4
EUS 2803.00 6
aEUS 3900.00 2

Top 3 results are bolded

using cooperative coevolution, named CCOABC [66]. This
method was also specifically designed for high-dimension
optimization, and was applied on the CEC’2010 bench-
mark under the same protocol. Results are available in
Supp. File 1 and show that aEUS obtains better results than
CCOABC for half of the functions (10), while CCOABC
was better for the other half (10) for D = 1000. A statis-
tical comparison (Wilcoxon signed rank test) of the mean
errors gives p = 0.2575, which implies that we cannot
conclude that one method is better than the other. These
results confirm that aEUS is very competitive and obtains
results at least comparable to those of recent state-of-the-art
methodologies.

5.3 Statistical analysis

In order to further assess the significance of our results, we
performed a statistical analysis of the results applying the
non-parametric testing presented in [67]. We performed a
Wilcoxon signed-rank test between our method (aEUS) and
all the other methods presented at the CEC’2010 conference
two-by-two (paired), for each FEs cutoff. The calculations
were made on the average error values, as suggested in
[67]. Table 5 recapitulates the p-values obtained for each
comparison.

The table show several comparisons where the p-value
is below 5 %, implying a statistically significant difference
of performance between aEUS and the related methods. In
order to know which of two statistically different meth-
ods performs the best, we checked the W+ and W− scores
for each of these cases. We found that for every signifi-
cant comparison the signed ranks corresponding to aEUS
were higher, implying that aEUS performed better. These
results reinforce the results discussed before, aEUS seems
to obtain outcomes whose quality is similar to that obtained
by MA-SW-Chains and EOEA and these three methods are
not significantly statistically different. DMS-PSO-SHS also
seems to perform better at FEs = 3.0E6. Finally, we can say
that aEUS outperforms EUS, and this is particularly visible
when the number of FEs grows.

5.4 aEUS computational running time

As shown previously, EUS runs very fast as a consequence
of its local search design and algorithmic simplicity. We
therefore assumed that this should also be the case for
aEUS. To test this assumption, we investigated the effi-
ciency of aEUS by computing its average running time on
every function of the CEC’2010 benchmark on an Intel core
i7@3.60GHz with 16Gb RAM. Given the preceding results,
we also investigated the running time of EUS and MA-
SW-Chains. Supp. Table S3 shows that aEUS runs slightly
faster than EUS, executing 3.0E6 function evaluations of



Adaptive pattern search for large-scale optimization

FEs = 1.2E5

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

DECC-G
DECC-G*
MLCC

DASA
SDENS
DECC-DML

jDElsgo
DMS-PSO-SHS
EOEA

MA-SW-Chains
EUS
aEUS

FEs = 6.0E5 FEs = 3.0E6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

p

Fig. 1 Performance profiles of the 12 studied algorithms. This Figure
shows the performance profiles, of each method across the 20 func-
tions. Specifically, we show the performance profiles at FEs (number
of function evaluations) = {1.2E5, 6.0E5, 3.0E6}. In order to avoid

unreadable Figure, we merely colored EUS, aEUS and MA-SW-
Chains results. Further results at FEs = 3.0E6 are available in Supp.
Figure S1. The complete list of Area Under the Curve (AUC) for each
function is available in Supp. Table S2

non-expensive 1000D objective functions in ∼7 s. More
expensive functions require up to ∼300 s to be processed.
By contrast, MA-SW-Chains require much more computing
time. As a comparison basis, the less expensive 1000D func-
tions require ∼160 s to be processed using MA-SW-Chains
under the same conditions, which is ∼25-fold more than
aEUS. Therefore, if aEUS were allotted the same computing
time as MA-SW-Chains, it might achieve better results.

Next, we used these outcomes to evaluate the time com-
plexity of aEUS. We ran aEUS on D = {50, 100, 200,

500, 1000} and computed the time required for achieving
3.0E6 function evaluations. For each dimension D, we
repeated the procedure 25 times and calculated the average
computation time. Figure 2a shows the graph t = f (D)

obtained for function F1, where t represents the running
time in milliseconds and D the dimension. As may be
seen, this graph does not show a linear relationship. To clar-
ify the relationship produced, we drew two other graphs
with the same values, one with a logarithmic scale for
t and a decimal scale for D (Fig. 2b) and another with
both logarithmic scales (Fig. 2c). The latter shows that a
linear relationship exists between log(t) and log (D) (Pear-
son’s correlation coefficient α = 0.999). This indicates
that the variation of running time in relation to dimen-
sion is a power function. Using a simple linear regression,
we found that t = c ∗ D1.88, with c a constant value. We
applied the same test to several other functions and obtained
similar results, with a linear coefficient ranging from

Table 5 p-values from Wilcoxon signed-rank test between aEUS and the algorithms presented at the CEC’2010 conference

aEUS

FEs = 1.2E5 FEs = 6.0E5 FEs = 3.0E6
p FDR p FDR p FDR

DECC-G No data No data No data No data 0.01718 0.17180
DECC-G* No data No data No data No data 0.49801 1.00000
MLCC No data No data No data No data 0.1054 0.63240
DASA 0.28623 1.00000 0.23517 0.80980 0.04187 0.31992
SDENS 0.00422 0.02954 0.00422 0.02954 0.02148 0.19332
EOEA 0.52167 1.00000 0.75617 0.80980 0.84082 1.00000
MA-SW-Chains 0.230513 1.00000 0.20245 0.80980 0.98544 1.00000
jDElsgo 0.00059 0.00472 0.01362 0.08172 0.985435 1.00000
DECC-DML 0.01923 0.11538 0.13273 0.66365 0.03999 0.31992
DMS-PSO-SHS 0.2611 1.00000 0.24549 0.80980 0.647655 1.00000
EUS 0.95187 1.00000 0.00266 0.02128 0.00036 0.00396

p-values were adjusted using False Discovery Rate (FDR) correction [68] for each FEs time point

Results passing 5% significance threshold are bolded



V. Gardeux et al.

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

a) b) c)

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1.5 2.5 3.5

Fig. 2 aEUS computational running time. The figure shows aEUS
computing times (in ms) for achieving 3.0E6 function evaluations on
different dimension scales (D = {50,100,200,500,1000}). The times
are averaged across 25 runs. Panel (a) shows a linear plot t = f(D),

panel (b) shows the same plot with the time t in logarithmic scale
log(t) = f(D), and panel (c) shows the same values in log-log scale
log(t) = f(log(D))

1.88 (F1) to 1.99 (F9) (Supp. File 2). This discloses that the
computational complexity of the algorithm is approximately
C = O

(
D2

)
.

6 Conclusions and future work

We have demonstrated how an adaptive pattern search algo-
rithm can be effective for high-dimensional problems. Like
EUS, which it extends, aEUS improves the solution vector
dimension by dimension. However, instead of scanning all
dimensions at each iteration, it employs a dimension win-
nowing approach to drop those dimensions over which the
line search yields no improvement. Furthermore, aEUS uses
a parameter decay process to adapt the ratio value of EUS
and significantly simplifies the restart procedure of EUS.

The aEUS approach was tested on 20 scalable functions
and was compared with 11 state-of-the-art methods. The
results showed that aEUS performed very well on all func-
tions, and more specifically on separable ones. Overall, in
addition of being very simple to use and implement aEUS
ranked 4th (out of 11 methods) at the end of the 3.0E6
FEs, and ranked 2nd in earlier FEs cutoffs Moreover, aEUS
ranked second according to the Formula 1 equation used to
rank the algorithms that participated in the CEC’2010 com-
petition Finally, aEUS required an order of magnitude less
computation time to obtain solutions comparable to those
obtained by its best competitors.

Future works are planned to improve aEUS. They can be
pursued in many different ways given the modular nature
of the framework in which aEUS is designed. First, pos-
sible hybridization of aEUS can be studied in the scope
of more global research algorithms, as already successfully
investigated by external research teams, in particular with
the Artificial Bee Colony algorithm [69, 70]. Other vari-
ants of the dimension winnowing approach could also be
investigated, since this component of our algorithm led to
significant improvements both in convergence speed and

quality of results. Typically, subsets of dimensions could be
analyzed in parallel, and results could be merged in the end,
for purposes such as using Path Relinking algorithms. We
believe that the parallelization of our algorithm could lead
to even faster convergence, while keeping the robustness of
the results. Another possible improvement would be to use
a more elaborate line search procedure, in order to make the
unidimensional search more thorough, as by using the 3-2-3
line search procedure proposed in [48]. In sum, we believe
that even though aEUS already exhibits very satisfactory
results, it could be further improved in many different ways.
This derives mainly from the fact that the aEUS algorithm
stands on simple concepts that were assembled to make a
core algorithm specifically designed for high dimensional
optimization.

References

1. Olariu S, Zomaya AY (2005) Handbook of bioinspired algorithms
and applications. Chapman & Hall/CRC, London

2. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of IEEE international conference on neural networks.
Perth

3. Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley Longman Publishing Co.,
Inc., p 372

4. Bellman R (1957) Dynamic programming. Princeton University
Press, Princeton

5. Lee EK (2007) Large-scale optimization-based classification
models in medicine and biology. Ann Biomed Eng 35(6):1095–1
1109

6. Nasiri JA et al (2009) High dimensional problem optimiza-
tion using distributed multi-agent PSO. In: Third UKSim Euro-
pean symposium on computer modeling and simulation, 2009.
EMS ’09

7. Larranaga P et al (2006) Machine learning in bioinformatics. Brief
Bioinform 7(1):86–112

8. Levitsky V et al (2007) Effective transcription factor binding site
prediction using a combination of optimization, a genetic algo-
rithm and discriminant analysis to capture distant interactions.
BMC Bioinform 8(481):1–20



Adaptive pattern search for large-scale optimization

9. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection
techniques in bioinformatics. Bioinformatics 23(19):2507–2517

10. Ghalwash MF et al (2016) Structured feature selection using
coordinate descent optimization. BMC Bioinform 17:158

11. Blanco R, Larrañaga P (2001) Selection of highly accurate genes
for cancer classification by estimation of distribution algorithms.
in: Workshop of Bayesian models in medicine. AIME 2001. 1–4
July. Cascais

12. Saeys Y et al (2004) Feature selection for splice site prediction:
a new method using EDA-based feature ranking. BMC Bioinform
5(64):1–11

13. Armananzas R et al (2008) A review of estimation of distribution
algorithms in bioinformatics. BioData Mining 1(6):1–12

14. Dittrich M et al (2008) Identifying functional modules in protein-
protein interaction networks: an integrated exact approach. Bioin-
formatics 24(13):I223–I231

15. Xiao X et al (2003) Gene clustering using self-organizing maps
and particle swarm optimization. In: Parallel and distributed pro-
cessing symposium, 22–26 April. IEEE Computer Society

16. Maulik U, Bandyopadhyay S, Mukhopadhyay A (2011) Multi-
objective genetic algorithms for clustering: applications in data
mining and bioinformatics. Springer Science & Business Media

17. Gardeux V et al (2013) Optimization for feature selection in
DNA microarrays. In: Heuristics: theory and applications. Nova
Publishers

18. Handl J, Kell D, Knowles J (2007) Multiobjective optimization
in bioinformatics and computational biology. IEEE/ACM Trans
Comput Biol Bioinform 4(2):279–292

19. Shan S, Wang GG (2010) Survey of modeling and optimiza-
tion strategies to solve high-dimensional design problems with
computationally-expensive black-box functions. Struct Multidis-
cip Optim 41(2):219–241

20. Regis R (2013) An initialization strategy for high-dimensional
surrogate-based expensive black-box optimization. In: Zuluaga
LF, Terlaky T (eds) Modeling and optimization: theory and appli-
cations. Springer, New York, pp 51–85

21. Hvattum LM, Glover F (2009) Finding local optima of high-
dimensional functions using direct search methods. Eur J Oper Res
195(1):31–45

22. LaTorre A, Muelas S, Pena JM (2011) A MOS-based dynamic
memetic differential evolution algorithm for continuous optimiza-
tion: a scalability test. Soft Comput 15(11):2187–2199

23. Wang H, Wu ZJ, Rahnamayan S (2011) Enhanced opposition-
based differential evolution for solving high-dimensional continu-
ous optimization problems. Soft Comput 15(11):2127–2140

24. Yang ZY, Tang K, Yao X (2011) Scalability of generalized adap-
tive differential evolution for large-scale continuous optimization.
Soft Comput 15(11):2141–2155

25. Zhao S-Z, Suganthan PN, Das S (2010) Self-adaptive differen-
tial evolution with modified multi-trajectory search for CEC’2010
large scale optimization. In: Swarm, evolutionary, and memetic
computing. Springer, Berlin, pp 1–10

26. Hedar A-R, Ali A (2012) Tabu search with multi-level neigh-
borhood structures for high dimensional problems. Appl Intell
37(2):189–206

27. Stanarevic N (2012) Hybridizing artificial bee colony (ABC)
algorithm with differential evolution for large scale optimization
problems. Int J Math Comput Simul 6(1):194–202

28. You X (2010) Differential evolution with a new mutation operator
for solving high dimensional continuous optimization problems. J
Comput Inf Syst 6(9):3033–3039

29. Ros R, Hansen N (2008) A simple modification in CMA-ES
achieving linear time and space complexity. In: Rudolph G et
al (eds) Parallel problem solving from nature—PPSN X. Springer,
Berlin, pp 296–305

30. Liao T, Montes de Oca MA (2011) Tuning parameters across
mixed dimensional instances: a performance scalability study
of Sep-G-CMA-ES. In: Proceedings of the 13th annual confer-
ence companion on genetic and evolutionary computation. ACM,
Dublin, pp 703–706

31. Montes de Oca MA, Aydın D, Stützle T (2011) An incremental
particle swarm for large-scale continuous optimization problems:
an example of tuning-in-the-loop (re)design of optimization algo-
rithms. Soft Comput 15(11):2233–2255

32. Masegosa AD, Pelta DA, Verdegay JL (2013) A centralised coop-
erative strategy for continuous optimisation: the influence of
cooperation in performance and behaviour. Inf Sci 219(0):73–92

33. Li X, Yao X (2012) Cooperatively coevolving particle swarms for
large scale optimization. IEEE Trans Evol Comput 16(2):210–224

34. Li X et al (2015) Editorial for the special issue of Information
Sciences Journal (ISJ) on “Nature-inspired algorithms for large
scale global optimization”. Inf Sci 316:437–439

35. Tsurkov V (2001) Large-scale optimization. Applied optimiza-
tion. Springer US

36. Liu L, Shao L, Li X (2015) Evolutionary compact embedding for
large-scale image classification. Inf Sci 316:567–581

37. Miranda V, Martins J, Palma V (2014) Optimizing large scale
problems with metaheuristics in a reduced space mapped by
autoencoders-application to the wind-hydro coordination. IEEE
Trans Power Syst 29(6):3078–3085

38. LaTorre A, Muelas S, Pena J (2015) A comprehensive comparison
of large scale global optimizers. Inf Sci 316:517–549

39. Gardeux V et al (2009) Unidimensional search for solving contin-
uous high-dimensional optimization problems. In: Ninth interna-
tional conference on intelligent systems design and applications.
ISDA ’09. November 30–December 2, 2009. IEEE Computer
Society, Pisa

40. Yang X-S, Koziel S (2011) Computational optimization and appli-
cations in engineering and industry, vol 359. Springer Science &
Business Media

41. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to
derivative-free optimization, vol 8. SIAM, Philadelphia

42. Torczon V (1997) On the convergence of pattern search algo-
rithms. SIAM J Optim 7(1):1–25

43. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct
search: new perspectives on some classical and modern methods.
SIAM Rev 45(3):385–482

44. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical
and statistical problems. J ACM 8(2):212–229

45. Lozano M, Molina D, Herrera F (2011) Editorial scalability of
evolutionary algorithms and other metaheuristics for large-scale
continuous optimization problems. Soft Comput 15(11):2085–2087

46. Glover F et al (1998) A template for scatter search and path
relinking. In: Hao J-K (ed) Artificial evolution. Springer, Berlin,
pp 1–51

47. Glover F (1995) Tabu thresholding: improved search by nonmono-
tonic trajectories. INFORMS J Comput 7(4):426–442

48. Gardeux V et al (2011) EM323: a line search based algorithm
for solving high-dimensional continuous non-linear optimization
problems. Soft Comput 15(11):2275–2285

49. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by
simulated annealing. Science 220(4598):671–680

50. Omidvar MN, Li X, Yao X (2010) Cooperative co-evolution with
delta grouping for large scale non-separable function optimization.
In: IEEE congress on evolutionary computation (CEC 2010). 18–
23 July. IEEE Computer Society, Barcelona

51. Tang K et al (2010) Benchmark functions for the CEC’2010 spe-
cial session and competition on large scale global optimization. In:
Nature inspired computation and applications laboratory, USTC,
China: http://nical.ustc.edu.cn/cec10ss.php

http://nical.ustc.edu.cn/cec10ss.php


V. Gardeux et al.

52. Yang Z, Tang K, Yao X (2008) Large scale evolutionary opti-
mization using cooperative coevolution. Inf Sci 178(15):2985–
2999

53. Yang Z, Tang K, Yao X (2008) Multilevel cooperative coevolution
for large scale optimization. In: IEEE congress on evolution-
ary computation (CEC 2008). June 1–6. IEEE Computer Society,
Hong Kong

54. Korosec P, Tashkova K, Silc J (2010) The differential Ant-
Stigmergy Algorithm for large-scale global optimization. In: IEEE
congress on evolutionary computation (CEC 2010). 18–23 July.
IEEE Computer Society, Barcelona

55. Wang H et al (2010) Sequential DE enhanced by neighborhood
search for large scale global optimization. In: IEEE congress on
evolutionary computation (CEC 2010). 18–23 July. IEEE Com-
puter Society, Barcelona

56. Wang Y, Li B (2010) Two-stage based ensemble optimization for
large-scale global optimization. In: IEEE congress on evolutionary
computation (CEC 2010). 18–23 July. IEEE Computer Society,
Barcelona

57. Molina D, Lozano M, Herrera F (2010) MA-SW-Chains: memetic
algorithm based on local search chains for large scale contin-
uous global optimization. In: IEEE congress on evolutionary
computation (CEC 2010). 18–23 July. IEEE Computer Society,
Barcelona

58. Brest J et al (2010) Large scale global optimization using self-
adaptive differential evolution algorithm. In: IEEE congress on
evolutionary computation (CEC 2010). 18–23 July. IEEE Com-
puter Society, Barcelona

59. Zhao S-Z, Suganthan PN, Das S (2010) Dynamic multi-swarm
particle swarm optimizer with sub-regional harmony search. In:
IEEE congress on evolutionary computation (CEC 2010). 18–23
July. IEEE Computer Society, Barcelona

60. Brest J et al (2008) High-dimensional real-parameter optimization
using self-adaptive differential evolution algorithm with popula-
tion size reduction. In: IEEE congress on evolutionary computa-
tion (CEC 2008). June 1–6. IEEE Computer Society, Hong Kong

61. Potter MA, Jong KAD (1994) A cooperative coevolutionary
approach to function optimization. In: Proceedings of the inter-
national conference on evolutionary computation. The third con-
ference on parallel problem solving from nature: parallel problem
solving from nature. Springer, pp 249–257

62. Dorigo M, Birattari M (2010) Ant colony optimization. In: Ency-
clopedia of machine learning. Springer, pp 36–39

63. Kennedy J (2010) Particle swarm optimization. In: Encyclopedia
of machine learning. Springer, pp 760–766

64. Vaz AIF, Vicente LN (2007) A particle swarm pattern search
method for bound constrained global optimization. J Glob Optim
39(2):197–219

65. Dolan ED, Moré JJ (2002) Benchmarking optimization software
with performance profiles. Math Program 91(2):201–213

66. Ren Y, Wu Y (2013) An efficient algorithm for high-dimensional
function optimization. Soft Comput 17(6):995–1004

67. Garcı́a S et al (2009) A study on the use of non-parametric tests
for analyzing the evolutionary algorithms’ behaviour: a case study
on the CEC’2005 special session on real parameter optimization.
J Heuristics 15(6):617–644

68. Benjamini Y, Hochberg Y (1995) Controlling the false discovery
rate—a practical and powerful approach to multiple testing. J R
Stat Soc Ser B Methodol 57(1):289–300

69. Dass P et al (2015) Hybridisation of classical unidimensional
search with ABC to improve exploitation capability. Int J Artif
Intell Soft Comput 5(2):151–164

70. Jadon S, Bansal J, Tiwari R (2016) Escalated convergent artificial
bee colony. J Exp Theor Artif Intell 28(1–2):181–200


	Adaptive pattern search for large-scale optimization
	Abstract
	Introduction
	Pattern Search
	Adaptive pattern search
	Experimental setup
	Results and discussion
	aEUS results
	aEUS vs. other state-of-the-art methods
	Statistical analysis
	aEUS computational running time

	Conclusions and future work
	References


