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Abstract – Ejection chain methods, which include the classical Lin-Kernighan (LK) 
procedure and the Stem-and-Cycle (S&C) reference structure, have been the source of 
the currently leading algorithms for large scale symmetric traveling salesman problems 
(STSP). Although these methods proved highly effective in generating large 
neighborhoods for symmetric instances, their potential application to the asymmetric 
setting of the problem (ATSP) introduces new challenges that require special 
consideration. This paper extends our studies on the single-rooted S&C to examine the 
more advanced doubly-rooted (DR) reference structure. The DR structure, which is 
allied both to metaheuristics and network optimization, allows more complex network-
related (alternating) paths to transition from one tour to another, and offers special 
advantages for the ATSP. Computational experiments on an extensive testbed exhibits 
superior performance for the DR neighborhood over its LK counterpart for the ATSP. 
We additionally show that a straightforward implementation of a DR ejection chain 
algorithm outperforms the best local search algorithms and obtains solutions 
comparable to those obtained by the currently most advanced special-purpose 
algorithms for the ATSP, while requiring dramatically reduced computation time. 
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1. Introduction 

 

The classical Traveling Salesman Problem (TSP) may be described in the setting of a 

collection of cities having specified distances between them. The objective is to determine 

the shortest tour that starts from an arbitrary city, visits each remaining city exactly 

once, and then returns to the origin. In graph theory, the problem can be defined on a 

graph ( , )G V A= , where 1{ ,..., }nV v v=  is a set of n  vertices (nodes) and 

{( , ) | , , }i j i jA v v v v V i j= ∈ ≠  is a set of arcs, together with a non-negative cost (or 

distance) matrix = [ ( , )]i jC c v v  associated with A. The problem is called the symmetric TSP 

(STSP) if =( , ) ( , )i j j ic v v c v v  for all ( , ) ,i jv v A∈  and the asymmetric TSP (ATSP) otherwise. 

Elements of A are often called edges (rather than arcs) in the symmetric case and may be 

denoted by {�� , ��} rather than (�� , ��) since they are unordered rather than ordered pairs. 

The STSP (ATSP) consists in determining the Hamiltonian cycle (circuit), often simply 

called a tour, of minimum cost.   

 

The version of the STSP in which distances satisfy the triangle inequality  

( + ≥( , ) ( , ) ( , )i j j k i kc v v c v v c v v  for all distinct ∈, ,i j kv v v V ) is the most studied special case of 

the problem, notably including the particular instance where V  is a set of points in a 2-

dimensional plane and ( , )i jc v v  is the Euclidian distance between iv  and .jv  The ATSP is 

more general than the STSP and likewise embraces a wide range of applications 

particularly arising in scheduling optimization in manufacturing [5] and in vehicle routing 

in distribution and transportation networks [11, 21, 35]. These basic applications are 

significantly expanded by the variety of complex real-world vehicle routing problems 

(encompassing time-windows and other hard constraints and multiple vehicles) that can 

be solved by first re-casting them as an ATSP using polynomial-time transformations [23, 

24, 36]. 

 

The ATSP is also much more difficult to solve than the STSP for both exact and 

approximation algorithms [2, 34]. Perhaps due to this difficulty the research on TSP has 

been mostly focused on the STSP, and algorithm developments are much less advanced 

for the ATSP. Nevertheless, remarkable progress in local search algorithms for the ATSP 

has come about by drawing on generalizations of the most powerful neighborhood search 

methods for the STSP, specifically the ejection chain methods represented by the classical 

Lin-Kernighan (LK) procedure [25] and the Stem-and-Cycle (S&C) reference structure [12]. 

(For an extensive coverage of these methods we refer the reader to Rego et al. [30].) 
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In the general context of combinatorial optimization, ejection chains are constructions to 

create variable-depth neighborhoods efficiently for local search procedures. The 

underlying technique consists of decomposing a very large neighborhood into a sequence 

of component neighborhood structures that can be evaluated in polynomial time. Each 

component neighborhood structure in the sequence does not usually correspond to a 

feasible solution but constitutes a reference structure that permits a feasible solution to 

be obtained efficiently. The S&C is a fundamental structure in a number of other 

reference structures used in the creation of ejection chain methods. (For algorithm 

designs and implementations of the S&C reference structure see Pesch and Glover [27], 

Rego [29], and Gamboa, Rego and Glover [9, 10].)  

 

This paper explores a generalization of the S&C reference structure for traveling salesman 

problems called the Doubly-Rooted (DR) S&C (Glover [13]) that has special advantages for 

the ATSP.  These neighborhoods exhibit a special property called combinatorial leverage, 

which enables solutions dominating exponential alternatives to be obtained with 

polynomial effort. Excellent studies on the domination analysis of these neighborhoods for 

the ATSP can be found in Punnen and Kabadi [28] and Gutin and Yeo [15].  

 

A key contribution of this paper may be viewed in the context of two earlier publications 

that have deservedly received wide acclaim. The first concerns the original proposal of the 

now-famous Lin-Kernighan (LK) method for the Symmetric TSP [25]. The second, which is 

yet more germane, is a straightforward adaptation of the LK algorithm to the Asymmetric 

TSP by Kanellakis and Papadimitriou [22]. In the latter publication, the authors base the 

relevance of their contribution on results they obtain for ATSP instances ranging in size 

from 30 to 90 nodes and suggest that the algorithm is very suitable for the solution of 

very large instances of the ATSP. This specialized LK procedure (referred in the literature 

by the KP method) has been a mainstay of ATSP references for over three decades. An 

enhanced implementation of the method that includes advanced data structures and 

various implementation techniques to accelerate the search has been undertaken by 

Cirasella et al. [6] to address instances up to 1000 nodes or more. The Cirasella et al. 

paper is particularly devoted to showing the potential of this specialized LK variant to 

solve instances that are currently considered large-scale in the asymmetric setting.   

 

Our main objective here is to provide a comparative study of the DR neighborhood 

structure and the generalized LK neighborhood underscored in the KP method [22] and 
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more recently used in the current state-of-the-art local search algorithm for the ATSP by 

Cirasella et al. [6].  Additionally, in order to place our developments in a broader 

perspective we extend our computational analysis to include comparisons with the latest 

metaheuristic advances for the ATSP involving Memetic Algorithms [3], Ant Colony 

Optimization [1, 37], Extremal Optimization [4], Genetic Algorithms [26], and hybrids of 

these methods [7, 39] all aimed at extending local search with advanced search guidance.  

 

The remainder of this paper is organized as follows. Section 2 presents the doubly-rooted 

ejection chain method and describes the algorithm. Section 3 derives a comparative 

analysis of the DR with LK neighborhood structures and other state-of-the-art algorithms 

for the ATSP. Section 4 summarizes our findings and provides directions for further 

research.    

 
 

2. The Doubly-Rooted Stem-and-Cycle Algorithm 

 

The general structure of the algorithm can be briefly described as follows. Starting from 

an initial tour, the algorithm attempts to improve the current solution iteratively by 

means of a network (or graph) related subpath ejection chain method, which generates 

moves coordinated by a doubly-rooted stem-and-cycle reference structure.  

 

2.1. The Doubly-Rooted Reference Structure 

The doubly-rooted reference structure generalizes the single-rooted stem-and-cycle 

reference structure in two basic forms: a bicycle in which the roots are connected by a 

single path, joining two cycles and a tricycle in which the two roots are connected by three 

paths, thereby generating three cycles. Our terminology may be understood by reference 

to Figure 1, which illustrates the basic S&C reference structure with root r and tip node t 

and the two forms of the DR structure with root nodes denoted by r1 and r2.  

 

In both the S&C structure and the DR structure there are exactly three nodes linked to 

each root; however special cases may occur leading to degenerate forms of these 

structures. If the tip and root nodes coincide in the S&C then only two nodes are linked to 

the root and the structure corresponds to a feasible tour as shown in Figure 2(a). 

Likewise, if the two roots coincide in the DR structure, then four nodes are linked to that 

root originating a bicycle structure with the two cycles connected by the root node as 

shown in Figure 2(b). 
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The nodes adjacent to the roots are called subroots and are divided into two classes: cycle 

subroots and non-cycle subroots, where the latter are those that lie on the path between 

the two roots of a bicycle. Cycle and non-cycle subroot nodes are indicated by grey and 

black shading, respectively. We do not highlight the non-cycle subroot in the S&C as it 

has no special use in this structure.  

 

 

Figure 1. Single-rooted and doubly-rooted S&C reference structures. 

 

  

Figure 2(a). Degenerate single-rooted 

structure. 

Figure 2(b). Degenerate doubly-rooted 

structure. 

 

In an ejection chain process we distinguish ejection moves that transform one reference 

structure into another of the same type from trial moves that create a valid solution 

structure (i.e., a TSP tour) from a reference structure. Consequently, the structure 

obtained with a trial move is called a trial solution.  From this point on we focus on the DR 

structure and refer to the S&C whenever relevant for the explanation of the doubly rooted 

ejection chain process. The interpretation and uses of these structures will become clear 

in the process. 
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Ejection Moves 

The rules to transition between structures are given by two types of ejection moves. 

 

Cycle subroot ejection move: Select a cycle subroot s and an associated root r. Add an 

arbitrary new edge (s, j) (not in the current structure) and delete the edge (s, r). After the 

step, j becomes a root (and r is no longer a root unless the two roots coincided before the 

step). 

 

Non-cycle subroot ejection move: Select a non-cycle subroot s and an associated root r. 

Add a new edge (s, j) such that j lies on the cycle in common with r, and delete the edge 

(s, r). Node j becomes a new root (and r is no longer a root). 

 

These moves are exactly the same for both the symmetric and asymmetric settings, 

though in the asymmetric case, the added and deleted arcs must be directed the same 

relative to the subroot s (i.e., the added and deleted pair is either (s, j) and (s, r) or (j, s) 

and (r, s)).  Figure 3 depicts the application of cycle and non-cycle ejection moves to the 

DR structures of Figure 1.  In the figure, grey lines denote edges that are added by the 

move and dotted lines denote edges to be deleted. 

 

 

Figure 3. Examples of cycle and non-cycle ejection moves. 

 

Trial Solutions 

The trial solutions available to the doubly-rooted structure are those generated by the 

union of the trial solutions available to the single-rooted stem-and-cycle (S&C) structure 

obtained by deleting any edge linking a root node to a cycle subroot.  Such a subroot 

becomes the tip of the S&C, while the (root) node that remains with three incident edges 

becomes the S&C root.  Trial moves are created by linking the tip to one of the subroots 

and deleting the arc that unions the subroot to the root, giving rise to two possible trial 



 

7 

solutions associated with each subroot. Figure 4 illustrates the creation of a possible trial 

solution associated with a single-rooted S&C structure obtained from the bicycle and 

tricycle doubly-rooted S&C of Figure 1. In the diagrams, nodes t1 and t2 specify the tip 

nodes associated with the two S&C structures from which the trial solutions are obtained.  

 

 

Figure 4. Examples of trial moves on bicycle and tricycle structures. 

 

In fact, the trial solutions that result by transforming a cycle subroot s into a tip t, for 

each such s associated with a given root r, are the same as the trial solutions similarly 

produced from the subroots of the other root, and hence attention can be restricted to 

only one of the two sets of subroots for this purpose.  Thus, each cycle subroot of a given 

root produces two trial solutions.  The enriched pool of such trial solutions, together with 

an enriched set of moves for transitioning from one reference structure to the next, 

provide the potential advantage of the doubly-rooted structure over the single-rooted 

stem-and-cycle structure. For the asymmetric case the advantage is provided by the fact 

that a subset of these possibilities is capable of preserving tour orientation, which gives 

rise to exactly one possible trial solution in a bicycle structure and two trial solutions in a 

tricycle. These orientation preserving moves are shown in Figures 5(a) and 5(b). 

 

   

Figure 5(a). Trial move on a 

bicycle structure. 

Figure 5(b). Trial moves on a tricycle structure. 
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2.2 The Ejection Chain Procedure 

 
In the design of stem-and-cycle ejection chain procedures we impose what we call 

legitimacy restrictions in order to achieve two main purposes: (1) to prevent the method 

from visiting solutions already inspected during the ejection chain process; (2) to generate 

special forms of alternating paths which have proved useful in several classical graph 

theory problems. For the first purpose it is sufficient to stipulate that no deleted edge is 

added back during the construction of the chain. The second purpose deserves some 

additional attention.  

 

Alternating Path Considerations 

In classical alternating path methods in graph theory, and in neighborhood search 

processes related to them, the customary approach is to restrict the edges qualifying for 

deletion to be edges of the starting solution. Methods that use this approach, which 

include the classical LK procedure, may be viewed as static alternating path methods, 

because new edges introduced during the construction of the chain are exempt from 

deletion. However, certain neighboring solutions cannot be obtained except by generating 

alternating paths in which previously added path edges are also candidates to be 

dropped. Thus, in contrast to classical approaches, this produces a dynamic alternating 

path method. In fact, the dynamic alternating paths provided by single- and doubly-rooted 

S&C structures provide the ability to reach any TSP tour by a succession of moves 

starting from any other tour, in contrast to the LK neighborhood that can fail to find 

certain types of improved tours even if they are close to the current tour, as it will be 

discussed later. As proved in Glover [13], this ability to reach any possible tour is retained 

by adding a simple “non-reversal” condition, which prevents an edge from being deleted if 

is inserted immediately after deleting another edge that was previously inserted. These 

restrictions define the legitimacy conditions for the S&C algorithm described in Rego [29], 

and are also incorporated into the present doubly-rooted S&C algorithm. 

 

A general design of the doubly-rooted stem-and-cycle neighborhood search procedure can 

be described as in Figure 6, where we define a legitimate neighborhood for a node ,iv  

denoted by ( )iLN v , as the subset of nodes of G that do not violate the legitimacy 

restrictions identified above. 
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Step 0. Initialization 

(a) Initialize a legitimate neighborhood for all nodes. 
(b) Denote the starting solution by � 
(c) Select the initial root nodes ��� and ��	 

(d) Create the initial 
� structure: 
Select a cycle subroot node for each root ��� and ��		and initialize the values of all other 

subroot nodes. 
(e) Set 
 = 0 and � = maximum	number	of	levels	of	an	ejection	chain. 

 
Step 1. Generate the ejection chain 

(a) Ejection Move: 

For each subroot �#$ compute the value of the ejection move for each node �� ∈ �&(�#$) 

as follows: )* = +(�#$ , ��) − +(�#$ , ��$), where ��$ is the root node associated with �#$. If �#$ 

is a non-cycle subroot, then the ejection move is only possible if �� ∈ -.*, where -.* is 

the cycle in common with ��$. 

(b) Select the node ��∗ that yields the minimum )* value and keep track of the subroot 

node �#$ considered for the move. 

(c) Trial Move: 
Consider one of the root nodes ��, and the three possible S&C structures that can be 

obtained by deleting an edge (��,�#0), where �#0(1 = 1,2,3) represents each subroot 

associated with  ��; 

Compute the value of the trial moves associated with each cycle subroot �5#0(1 = 1,2) of 

each S&C structure and choose one that minimizes 6* = +(�7 , �5#0) − +(�5#0 , ��), where �7 

represents the tip node of considered S&C structure. The solution cost change is given 
by ∆*= )* + 6*. 

(d) Keep track of the level 
∗ that produces the best trial tour so far and record the subroot 

node involved in the trial move. 
(e) Update �&. 

(f) Set 
 = 
 + 1 and set ��0 = ��∗, where ��0 is the root affected by the move. 

(g) If 
 < 	� and �& is not empty return to Step 1. Otherwise go to Step 2. 
 
Step 2. Perform the compound move 

(a) Apply to � each ejection move considered in the ejection chain up to the level 
∗.  

(b) Complete the update of � by executing the trial move for the level 
∗. 

 

 
 

Figure 6.  An iteration of the doubly-rooted stem-and-cycle procedure. 
 

 

Complexity 

The complexity of the doubly-rooted stem-and-cycle (DR) ejection chain procedure is 

determined as follows. For selecting an ejection move 2( 3)n −  operations may be 

considered for each subroot, hence a maximum of 6 2( 3)n× −  operations in total. Six 

additional operations are necessary to evaluate all possible trial moves associated with 

that ejection move (i.e. two operations for each of the three subroots considered for trial 

move evaluation). Hence, one level of a DR ejection chain may be performed in ;(<) time. 

According to the legitimacy restriction the number of levels of an ejection chain is 
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bounded by ( 1) / 2 ;n n n− − that is, all the edges may be deleted only once, except the 

number of the edges corresponding to the cardinality of a solution. Thus, the overall 

complexity of an ejection chain evaluation may reach 3
( ).O n  However, since the best trial 

solution is usually found at a relatively lower level, this effort can be notably reduced. The 

theoretical justification for this remark may be found in the theorem of Glover [12] which 

proves that, by using a subpath ejection method like the one used by our algorithm, 

subject to the restrictions that we consider as legitimate, it is always possible to generate 

any neighboring solution that differs from the starting solution by m  edges by adding less 

than 2m  edges. Since two neighboring solutions can differ at most by n  edges, then 2n  

may define an upper bound on the number of levels of an ejection chain and therefore, L 

is considered a user-supplied parameter. Hence, the real worst case complexity for one 

iteration of the algorithm may be considered as 2
( ).O n  

 

2.3 The Ejection Chain Algorithm 

 

As stated earlier the LK procedure relies on a static alternating path construction, which 

constitutes a limitation of the method in relation to more general ejection chain methods 

that have the ability to generate neighborhoods produced by dynamic alternating paths. It 

is well known that the paths generated by the LK neighborhood are unable to reach some 

tours that differ only by 4 edges from the current tour, which can otherwise be obtained 

by the so-called double-bridge neighborhood, originally suggested as a supplement of the 

basic LK procedure and likewise considered in the KP variant of the method [22] for the 

ATSP. An interesting theoretical analysis provided in Funke, Grünert and Irnich [8]  

shows that even a generalization of the LK approach that incorporates generalized 

alternating paths cannot reach solutions accessible to the S&C neighborhood. 

 

The KP method for the ATSP starts with a type of LK search based on sequences of special 

3-opt moves (with segment reordering) rather than 2-opt moves (with segment reversals) 

used in the original LK for the STSP.  When the LK search fails to improve the solution, 

the method searches for an improving 4-opt double-bridge move (with no reversals). Then 

KP returns to LK search and iterates in this manner until neither of the searches 

improves the tour. 

 

In order to assess the effectiveness of the doubly-rooted S&C neighborhood structure 

compared to the KP variant, we have adopted for our implementation a similar alternating 

strategy between the ejection chain search and the 4-opt double-bridge neighborhood. We 
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should stress that our 4-opt search is made separate from the basic ejection chain 

process only for the sake of comparisons since the doubly-rooted S&C neighborhood can 

also generate double-bridge moves. We should also note that the 4-opt search used in our 

DR algorithm corresponds to the efficient 2
( )O n  procedure of Glover [14] used in its recent 

implementations [6] analyzed here, as opposed to the potentially 4
( )O n  procedure 

considered in the original KP algorithm [22]. Our implementation of the 4-opt double- 

bridge procedure adopts the compact version devised by Johnson [17]. 

 

 

3. Computational Analysis 

  
Our tests reported here employ a straightforward implementation of an ejection chain 

algorithm based on the DR structure for the ATSP. Comparisons are established with the 

KP variant of the LK approach proposed by Kanellakis and Papadimitriou [22] for the 

ATSP. The KP implementation analyzed in this paper is due to Johnson and McGeoch and 

described in Cirasella et al. [6], though in the latter, the authors only report results for a 

more advanced implementation of the algorithm based on the so-called Iterated LK 

framework, denoted herein by iKP. The computational study of the basic KP is reported in 

[18].  

 

A number of attempts have been made to solve ATSPs using state-of-the-art algorithms 

for the STSP by first transforming the ATSP into an equivalent STSP instance. To address 

this approach the currently most effective LK variant for the STSP due to Helsgaun [16], 

herein denoted by H-LK, is also included in our analysis. Results for this advanced H-LK 

algorithm are also reported in [18].  

 

After completing comparisons with all LK variants whose results have been reported for 

the ATSP, we complete our analysis by establishing comparisons with the latest and most 

advanced metaheuristic algorithms for the ATSP.   

 

3.1. Comparison with Lin-Kernighan Variants 

 

Table 1 reports the computational results for all ATSP instances in the TSPLIB [32] 

testbed. The first two columns give the problem name and its size. The next columns 

show for each algorithm the relative percentage deviation from the optimal solution value, 

and the running time (in seconds) necessary to find those solutions. (Dashed cells 

indicate that results are not available for the corresponding problems and algorithms, and 

the optimal solutions found are highlighted in boldface figures.) The summary at the 
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bottom of Table 1 provides the average percent deviations from optimality, the average 

running times and the number of optimal solutions found over the set of problems tested 

by the corresponding algorithm.  

 

The results for the KP, iKP, and H-LK algorithms are averages over 5 or more 

(independent) runs for each instance (cf. [6], pp. 14) obtained by choosing a different city 

to initiate the nearest neighbor heuristic used to construct a starting tour (cf. [6], pp. 21). 

Runs were performed using a Silicon Graphics Power Challenge machine with 31 196 

MHz MIPS R10000 processors, 1 MB 2nd level caches and 7.6 GB of main memory shared 

by all processors. The implementation is a serial one; therefore if no implicit parallelism is 

employed by the compiler the algorithm presumably uses only one of the processors 

available. For comparison purposes, results for the DR algorithm are obtained in a similar 

manner except that only 5 runs were used for each instance and all runs were carried out 

using an Intel Core Duo 2.66 GHz processor with 3 GB RAM.  

 

In order to accurately compare computational times between algorithms, we provide 

normalized running times derived from runs of the standard benchmark code available in 

the DIMACS Implementation Challenge website [20]. Using the Hungarian method 

benchmark code as suggested in [18] for the case of the ATSP, we encountered relative 

factors of 1.500, 3.5714, and 4.6193 for n = 100, 316 and 1000, respectively; hence we 

found 3.2 a reasonable compromise for the actual factors of the two machines. 

 

Before discussing the results, we point out a number of important considerations. The 

only performance metric used in the literature for all LK variants consists of averages 

computed over a very small number of runs, which makes comparison between 

algorithms very difficult. Clearly, a sample size of 5 runs is not sufficiently large for the 

assessment of a randomized algorithm to be statistically significant, but may be 

acceptable if not much variability is found in sufficiently large experiments. Otherwise, 

there is a good deal of uncertainty concerning how representative the averages may be, 

including the degree to which they may have been if different cities had been chosen to 

initiate the algorithm, and raising doubt about the quality of the best solution found over 

the multiple runs. 
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Percentage Excess over Optimal Normalized Running Time 

Number of  Runs 5+ 5+ 5+ 5 5 5+ 5+ 5+ 5 5 

Instance      n 

KP iKP H-LK DR 
Best Run 

DR 
Average 

KP iKP H-LK DR 
Best Run 

DR 
Average 

atex1 16 — 0.44 — 0.00 0.00 — 0.07 — 0.00 0.00 
atex3 32 — 0.03 — 0.00 0.00 — 1.69 — 0.00 0.04 
atex4 48 — 0.00 — 0.00 0.99 — 2.22 — 0.29 0.69 
atex5 72 — 0.15 — 0.08 1.10 — 7.77 — 1.57 2.18 
atex8 600 4.25 0.99 0.82 1.55 2.99 3.38 2112.70 123.0 1233.63 898.85 
big702 702 2.10 0.21 0.41 0.58 0.77 6.04 1136.52 119.0 579.20 600.74 
br17 17 — 0.00 — 0.00 0.00 — 0.11 — 0.00 0.00 
code198 198 0.00 0.00 0.00 0.00 0.00 0.54 114.24 6.5 0.03 0.04 
code253 253 0.10 0.00 0.28 0.00 0.00 1.09 267.14 24.5 0.00 0.88 
dc112 112 0.39 0.31 0.28 0.19 0.30 15.47 904.31 4.5 4.93 4.95 
dc126 126 0.65 0.64 0.54 0.08 0.14 22.69 1533.84 5.5 13.25 10.68 
dc134 134 0.57 0.55 0.02 0.43 0.55 13.43 714.98 6.5 2.59 5.73 
dc176 176 0.67 0.59 0.49 0.61 0.79 20.48 1448.29 105.0 36.00 28.78 
dc188 188 0.59 0.52 0.13 0.00 0.24 12.98 674.15 28.5 1.44 27.03 
dc563 563 0.79 0.78 0.12 1.29 1.37 111.95 4379.74 2231.5 429.06 352.58 
dc849 849 0.62 0.61 0.23 0.64 0.66 114.80 5666.96 2180.0 9.98 263.96 
dc895 895 0.60 0.58 0.25 0.57 0.65 144.43 7214.80 22077.0 3408.35 2399.71 
dc932 932 0.26 0.27 0.26 0.10 0.13 119.17 4611.56 72373.0 2699.78 2139.80 
atex1 53 — 0.01 — 0.00 0.99 — 7.99  0.26 0.59 
atex3 70 — 0.02 — 0.00 0.33 — 4.83  0.90 1.64 
atex4 101 3.11 0.13 0.00 0.00 0.27 0.04 0.62 1.0 5.34 1.40 
atex5 111 4.04 0.12 0.00 0.00 0.18 0.04 1.00 1.0 3.20 2.54 
atex8 121 3.12 0.33 0.00 0.00 0.06 0.05 1.70 1.0 1.60 3.84 
big702 131 2.16 0.27 0.00 0.00 0.16 0.06 1.52 1.0 0.74 3.95 
br17 141 3.15 0.21 0.00 0.00 0.26 0.06 1.23 1.5 5.86 10.73 
code198 151 4.43 0.40 0.00 0.00 1.96 0.07 1.18 1.0 23.78 11.88 
code253 161 5.89 0.24 0.00 0.00 1.45 0.07 1.43 2.0 4.96 6.73 
dc112 171 4.44 0.45 0.00 0.00 0.70 0.09 1.52 2.5 13.82 15.12 
dc126 34 — 3.02 — 0.00 0.82 — 0.11 — 0.00 0.10 
dc134 36 — 0.03 — 0.00 0.08 — 0.11 — 0.06 0.12 
dc176 39 — 0.00 — 0.00 0.08 — 0.12 — 0.03 0.10 
ftv44 45 — 1.30 — 0.00 0.35 — 0.12 — 0.03 0.22 
ftv47 48 — 0.49 — 0.00 0.14 — 0.17 — 0.06 0.16 
ftv55 56 — 0.00 — 0.00 0.00 — 0.25 — 0.10 0.15 
ftv64 65 — 0.33 — 0.00 0.16 — 0.37 — 0.06 0.13 
ftv70 71 — 0.08 — 0.00 0.65 — 0.30 — 0.16 0.76 
ftv90 91 — 0.08 — 0.00 0.00 — 0.47 — 0.54 0.96 
kro124p 100 — 1.28 — 0.00 0.60 — 0.34 — 4.03 4.86 
p43 43 — 0.01 — 0.00 0.01 — 23.81 — 0.10 0.22 
rbg323 323 0.78 0.30 0.00 0.00 0.05 3.71 414.53 46.5 24.32 40.72 
rbg358 358 1.50 0.79 0.00 0.00 0.03 3.33 342.26 120.5 31.30 74.93 
rbg403 403 0.22 0.11 0.00 0.00 0.00 9.00 743.99 221.5 9.38 33.92 
rbg443 443 0.11 0.09 0.00 0.00 0.03 11.74 908.12 154.0 2.88 14.22 
ry48p 48 — 1.92 — 0.00 0.61 — 0.16 — 0.86 0.44 
td100.1 101 0.00 0.00 0.00 0.00 0.00 0.20 39.90 0.5 0.48 1.13 
td1000.20 1001 0.01 0.00 0.00 0.00 0.00 7.29 720.57 140.5 438.30 814.89 
td316.10 317 0.00 0.00 0.11 0.00 0.00 3.87 1950.07 24.5 2.82 4.98 
Average 28 Instances 1.59 0.34 0.14 0.22 0.49 22.36 1282.46 3571.75 320.96 277.67 
Average 47 Instances — 0.40 — 0.13 0.44 — 765.10 — 191.41 165.70 
Optimal 28 Instances 3 5 15 18 6      
Optimal 47 Instances — 9 — 36 11      

 
Table 1: Comparative analysis of ejection chain algorithms. 
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Additional confusion arises from the fact in some instances more than 5 runs are allowed, 

but without explanation of this exception to the testing protocol. In [6] the authors 

promised to provide full details in the final paper [18] with respect to how the experiments 

have been conducted, but unfortunately this did not happen. Results reported for the KP 

algorithm are likewise limited, in this case by examining only a subset of the standard 

TSPLIB testbed.   

 

To account for these difficulties and to ensure that we do not give our DR algorithm an 

unfair advantage, we have limited the number of our runs to exactly five for all instances. 

Beyond this, however, we test our algorithm on the complete testbed of 48 real-world 

instances of TSPLIB, and in addition to the average results over the five runs we report 

the solution found by the best of those runs. We argue that although the average solution 

quality over a specified number of runs is a relevant measure, the best solution found is a 

more appropriate metric of performance when a small number of runs is considered. In 

real applications, where time to conduct a large number of runs is not always available, 

one usually wants to implement the best solution found within the allotted time, or to 

present the decision maker with a subset of the best solutions for further consideration. 

Since the best solution found was not given in the experiments reported in [6] and [18] we 

assume for the sake of the analysis that all runs on individual instances produced 

solutions of similar quality (since otherwise the conclusion on the relative performance 

between the LK variants would have been defective by the absence of this information, 

especially if the optimal solution had been found in at least one of the runs). Although our 

DR algorithm exhibits a similar behavior on all test runs, with little variability in solution 

quality, it often manages to find the optimal solution in at least one of these runs for a 

given instance; hence, we consider it informative to report the solution and computation 

time of our best run.     

 

For an appropriate comparative assessment, we also note that the KP and the DR 

algorithms do not belong to the same class of heuristics as the iKP and H-LK algorithms, 

which reapply their core algorithm multiple times and take one or more orders of 

magnitude longer to run on the larger instances. In particular, following the classification 

established in the DIMACS TSP Implementation Challenge [20] and consistent with [18, 

19], the KP and DR algorithms may be considered local search procedures, while the iKP 

and H-LK types of algorithms are categorized as iterated (chained or repeated) local 

search. Iterated local search methods expend greater effort to explore the solution space 

more thoroughly and so are expected to find better solutions to compensate for their 

substantially increased running times. However, as our results make apparent, the 
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expectation of finding better solutions proves valid only in relation to the local search KP 

method, while our new DR algorithm obtains exceedingly high quality solutions without 

the expenditure of such additional effort. 

 

We now discuss a few of the main conclusions that can be inferred from the results 

reported in Table 1. First, our DR algorithm discloses itself to be far more effective and 

robust than the KP algorithm. Out of 28 instances for which results are available for KP, 

in only 4 instances did the KP algorithm manage to find tours that are on average slightly 

better than the averages found by the DR algorithm and in only 2 instances did these 

averages surpass the quality of the solutions found on our best run. By contrast, in some 

cases the average quality of solutions found by the DR algorithm exceeded that of the KP 

algorithm by more than 4% (a significant amount relative to differences in TSP tours) and 

our best solutions exceeded these KP average solutions by almost 6%. Although the non-

iterated form of KP terminates its search much earlier than DR, the solution quality of the 

KP approach is seriously compromised. For the ftv* instances, the KP algorithm produces 

solutions that on average deviate from optimality by 3.79% compared to an average 

deviation of only 0.63% produced by our DR algorithm. Moreover, the best of our runs 

finds the optimal solution for all instances of this class. For the other instances in this 

reduced testbed the KP algorithm produces tours of high quality, although the DR 

algorithm still exhibits superior performance. It is possible to predict that this relative 

advantage of our DR algorithm over the KP algorithm would be even more significant if KP 

had been tested on the remaining 19 instances of the standard testbed. These instances 

were omitted in [18] due to the imposed size limit of less than 100 cities, but it is 

noteworthy that these instances are not necessarily easy even for the advanced iKP 

variant of this KP algorithm. In particular, for instances as small as 34 cities (ftv33), the 

long running iKP procedure produces solutions that are on average more than 3% away 

from optimality and is unable to produce a zero gap even for the smallest of these 

instances (atex1) containing only 16 cities. Indeed, only in 4 out of the 19 instances did 

iKP manage to find a zero gap from optimality. Comparing DR with iKP on the basis of 

average solution quality over the multiple runs and on the whole set of 47 instances, the 

DR algorithm obtains the best average solution quality on 11 instances while iKP finds it 

on 10. Among these, a 0.00% gap from optimality is achieved on 9 instances by the iKP 

algorithm and on 11 instances by the DR algorithm. Overall, the iKP and DR algorithms 

find an equal number of 19 better solutions relative to each other and match on 9 

instances. In sum, the two algorithms exhibit similar average solution quality over the 

whole test set. Hence, in a comparison solely on the basis of the average solution quality 

over the multiple runs neither of the two algorithms appears to dominate the other. 
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However, it is apparent that the iKP algorithm requires significantly more computational 

time than the DR algorithm, regardless of possible imperfections in running time 

normalization relative to the computers where the algorithms were run. For instance, on 

the rbg* problems the DR algorithm finds its best tours in a fraction of the time (10% or 

less) required by the iKP algorithm to find its best tours, whose quality does not match 

that obtained by the DR method. In some cases, as illustrated by rgb403 and rbg443, the 

DR algorithm requires less than 5% of the time required by the iKP algorithm. Differences 

in speed of a similar order of magnitude may be seen in the dc* and td* instances, where 

on dc126 and td316.10, for example, these relative percentages may translate to over 25 

minutes for the iKP compared to less than 10 seconds for the DR algorithm to find tours 

of the same or better quality.   

 

In sum, the DR algorithm not only outperforms the basic KP algorithm but is comparably 

effective and considerably more efficient than its advanced iKP variant. This relative 

advantage is especially relevant considering the fact that our algorithm does not take 

advantage of the various speed-up optimizations used in the KP and iKP algorithms. The 

performance of the DR algorithm is additionally noteworthy when comparisons are made 

relative to its best run for each instance. As shown in Table 1, the average excess over the 

optimum tour length achieved by this best run is 0.13%, which is significantly lower than 

the 0.40% achieved by iKP while consuming a much longer computation time than that 

required by the DR algorithm. Also, the DR algorithm finds 36 optimal solutions out of the 

47 instances compared to only 9 optimal solutions found by the iKP algorithm. 

 
Comparing with the H-LK algorithm we should first note that results on individual 

instances as reported in [18] are only available for the reduced testbed of larger instances; 

however, the same study (cf. [18], pp. 450) points out that this algorithm obtains 

solutions within 0.3% of optimal within a (normalized) second for the omitted instances 

with less than 100 cities. For these same instances the average deviation from optimal of 

our DR algorithm is 0.36% obtained in 0.7 (normalized) seconds, while the best of our 

runs finds the optimal solution for all but one of these instances (atex8) for which the 

solution still falls within a 1% gap from optimal. As a result, our best run produces a 

0.00% gap in 0.48 (normalized) seconds on average. While both algorithms produce 

solutions of similar quality on average for these 19 instances, our DR algorithm appears 

to be more efficient, especially considering that the running time to perform the ATSP to 

STSP transformation required by the H-LK algorithm is not included in the times reported 

in [18]. For the remaining 28 instances, the H-LK algorithm produces solutions of better 

quality than our DR algorithm (0.14% versus 0.49% excess over optimal) on average, but 
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this difference in quality comes at the expense of a computation time that is more than an 

order of magnitude greater than that used by our DR algorithm. Finally, a comparison 

with our best run shows that although the excess over optimal obtained by H-LK (0.14%) 

is still lower than that of DR (0.21%), this difference is not significant, especially 

considering that the DR algorithm was capable of finding 18 optimal solutions while H-LK 

could only find 15 of them.  

 
3.2. Comparisons with Advanced Metaheuristic Algorithms 

 
We now extend our computational analysis by establishing comparisons with several of 

the most advanced metaheuristic algorithms in the ATSP literature.  Table 2 provides 

results for the following additional algorithms:  

• Model-Induced Max-Min Ant Colony (MIMM ACO) [1] 

• Max-Min Ant Colony (MM ACO) [37] 

• Extremal Optimization (EO) [4] 

• Cooperative Genetic Ant System (CGA) [7] 

• Memetic Algorithm (MA) [3] 

• Hybrid Genetic Algorithm (HGA) [39] 

• Genetic Algorithm (GA) [26] 

The results shown in Table 2 are a compilation of two recent computational studies. The 

results for MIMM-ACO, MM-ACO, EO, and CGAS were obtained from Bai et al. [1] and 

refer to averages over 25 runs carried out using a Pentium(R) Dual 1.80 GHz processor 

with 2 GB RAM. Results for MA, HGA, and GA are from Nagata and Soler [26]. In the 

latter, the authors report results for their GA with population sizes of 100 and 300, 

referred to here by GA-100 and GA-300, respectively. The HGA and GA results are 

averages of 100 runs using a Pentium 1.6 GHz processor and a Xeon 2.93 GHz processor, 

respectively, while MA results are for 20 runs using a Pentium 1.7 GHz processor. As for 

our DR algorithm we now provide the actual machine times obtained using the same Intel 

Core Duo 2.66 GHz processor with 3 GB RAM. 
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 Percentage Excess over Optimal Running Time (seconds) 

Number of Runs   5 5 25 25 25 25 20 100 100 100 5 5 25 25 25 25 20 100 100 100 

Instance n 

DR 

Best Run 

DR 

Average 

MIMM 

ACO 

MM 

ACO 

EO CGAS MA HGA GA 

100 

GA 

300 

DR 

Best Run 

DR 

Average 

MIMM 

ACO 

MM 

ACO 

EO CGAS MA HGA GA 

100 

GA 

300 

br17 17 0.0000 0.0000     0.00 0.00 0.0000 0.0000 0.00 0.00     0.05 1.9 0.00 0.00 

ft53 53 0.0000 0.9906 0.00 0.22 0.00 0.35 0.00 0.00 0.0060 0.0000 0.08 0.18 3.53 3.17 3.85 6.78 0.20 41.2 0.03 0.09 

ft70 70 0.0000 0.3336 0.00 1.71 0.00 0.00 0.03 0.00 0.0010 0.0000 0.28 0.51 9.85 10.15 8.93 15.32 0.86 83.6 0.04 0.14 

ftv100 101 0.0000 0.2685     0.00  0.0030 0.0000 1.67 0.44     0.40  0.06 0.29 

ftv110 111 0.0000 0.1839     0.02  0.0070 0.0000 1.00 0.79     0.98  0.08 0.36 

ftv120 121 0.0000 0.0554     0.14  0.0160 0.0000 0.50 1.20     2.00  0.1 0.37 

ftv130 131 0.0000 0.1560     0.01  0.0100 0.0000 0.23 1.23     1.30  0.11 0.42 

ftv140 141 0.0000 0.2562     0.08  0.0120 0.0000 1.83 3.35     2.11  0.12 0.53 

ftv150 151 0.0000 1.9609     0.01  0.0070 0.0000 7.43 3.71     1.54  0.15 0.56 

ftv160 161 0.0000 1.4536     0.02  0.0010 0.0000 1.55 2.10     2.04  0.17 0.65 

ftv170 171 0.0000 0.7042 0.05 0.25 0.28 0.00 0.05 0.02 0.0020 0.0000 4.32 4.73 108.28 96.73 103.27 128.76 2.78 68.3 0.19 0.69 

ftv33 34 0.0000 0.8243 0.00 0.00 0.00 0.00 0.00  0.0000 0.0000 0.00 0.03 6.12 9.75 4.78 28.73 0.05  0.01 0.06 

ftv35 36 0.0000 0.0815 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.02 0.04 5.35 15.37 7.35 21.35 0.08 15.6 0.02 0.05 

ftv38 39 0.0000 0.0784 0.00 0.00 0.00 0.00 0.10  0.0000 0.0000 0.01 0.03 8.64 10.96 7.83 29.79 0.26  0.02 0.08 

ftv44 45 0.0000 0.3472 0.00 0.00 0.00 0.00 0.44  0.2110 0.0372 0.01 0.07 9.37 12.35 8.21 37.63 0.36  0.02 0.07 

ftv47 48 0.0000 0.1351 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.02 0.05 7.52 10.08 9.37 29.7 0.13 90.3 0.02 0.07 

ftv55  56 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.03 0.05 6.38 18.63 5.06 18.41 0.16 125.6 0.03 0.1 

ftv64 65 0.0000 0.1631 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.02 0.04 15.37 27.65 16.42 29.25 0.24 101.2 0.04 0.17 

ftv70 71 0.0000 0.6462 0.03 5.78 0.72 0.75 0.01 0.00 0.0000 0.0000 0.05 0.24 64.53 61.25 32.26 69.54 0.38 43.8 0.04 0.19 

ftv90 91 0.0000 0.0000     0.00  0.0060 0.0000 0.17 0.30     0.28  0.05 0.15 

kro124p 100 0.0000 0.5951 0.00 1.64 0.35 0.00 0.01 0.00 0.0010 0.0000 1.26 1.52 33.25 54.21 20.86 78.52 0.74 28.9 0.08 0.33 

p43 43 0.0000 0.0071 0.00 0.08 0.13 0.00 0.01 0.00 0.0010 0.0000 0.03 0.07 8.35 9.38 5.47 7.53 0.35 4.2 0.02 0.1 

rbg323 323 0.0000 0.0452 0.00 1.30 0.06 0.13 0.00 0.00 0.0000 0.0000 7.60 12.73 0.01 96.75 87.12 103.28 0.07 110.4 0.96 4.25 

rbg358 358 0.0000 0.0344 0.00 0.75 0.00 0.35 0.00 0.00 0.0000 0.0000 9.78 23.42 0.01 75.37 69.65 96.49 0.08 58.4 1.32 5.63 

rbg403 403 0.0000 0.0000 0.00 1.35 0.00 0.31 0.00 0.00 0.0000 0.0000 2.93 10.60 0.01 104.39 85.32 147.83 0.08 33.1 1.61 6.63 

rbg443 443 0.0000 0.0294 0.00 1.73 0.00 0.00 0.00 0.00 0.0000 0.0000 0.90 4.44 0.01 90.65 76.14 143.76 0.09 144.2 1.7 6.74 

ry48p 48 0.0000 0.6130 0.00 0.00 0.00 0.00 0.03 0.00 0.0000 0.0000 0.27 0.14 7.83 7.97 5.45 12.35 0.32 53.4 0.02 0.07 

Average 16 Instances 0.0000 0.2737 0.01 0.99 0.10 0.13 0.01 0.00 0.0007 0.0000 1.72 3.67 18.02 45.45 35.77 60.59 0.41 62.76 0.38 1.58 

Average 18 Instances 0.0000 0.3127 0.00 0.82 0.09 0.11 0.04 — 0.0123 0.0021 1.53 3.27 16.36 39.71 30.96 55.83 0.40 — 0.34 1.41 

Average 27 Instances 0.0000 0.3690 — — — — 0.04 — 0.0105 0.0014 1.56 2.67 — — — — 0.66 — 0.26 1.07 

Optimal 16 Instances 16 3 13 5 10 10 10 13 11 16           

Optimal 18 Instances 18 2 16 8 13 13 10 — 12 17           

Optimal 27 Instances 27 4 — — — — 13 — 13 26           

 

Table 2: Comparative analysis with metaheuristic algorithms. 
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We begin by addressing the MM-ACO, MIMM-ACO, EO and CGAS algorithms as they are 

all tested on the same instances and computer system. Among these, MIMM-ACO seems 

to be the best performing algorithm finding the lowest average deviation from optimal and 

the largest number of optimal solutions while using the smallest computation time. 

Establishing direct comparisons with the remaining algorithms is not clear cut since the 

former are tested on a smaller set of instances. For example, the average deviation from 

optimal of MM-ACO can exceed 5% for some instances as in the case of ftv70. Even 

though the testbed used by HGA differs in a few instances and the results for this latter 

algorithm are averages over 100 runs as opposed to 25 runs used by the former 

algorithms, the performance of HGA appears to be on a par with that of MIMM-ACO. On 

the other hand, MA and GA are substantially faster in achieving solutions of similar 

quality to those found by the best performing of these algorithms, with GA obtaining lower 

percentage excess over optimal and a greater number of optimal solutions when the 

population size is increased from 100 to 300. However, considering that the GA algorithm 

runs on a more powerful computer than MA it is also apparent that GA with a population 

of 300 solutions has higher running times than MA. 

 

In order to appropriately compare the potential advantage of the metaheuristic 

approaches analyzed here relative to the local search methods examined in the previous 

section, a number of preliminary remarks should be made. As it can be seen from Tables 

1 and 2, the computational studies on local search algorithms for the ATSP involve 

instances of size slightly over 1000 cities while those on the metaheuristic algorithms only 

report results for a subset of these instances containing less than 450 cities. An 

interesting observation that can be derived from the results in Table 1 is that the 

instances overlooked by the metaheuristic algorithms comprise those where iKP had more 

trouble in finding its best solutions, which seems to suggest that those instances are 

particularly challenging. Within the range of the problem sizes tested by the metaheuristic 

algorithms those instances include dc126, dc176, and td316.10, on which iKP required 

over 25 minutes, as opposed to less than 3 minutes on average required by this method to 

find a 0.57% optimality gap on the instances in Table 2. A similar analysis on the 

instances larger than 500 cities (also omitted in the present tests) shows that these 

instances impose a significant computational burden on the algorithms tested in Table 1. 

Specifically, for these larger instances the DR, iKP, and H-LK algorithms required on 

average around 20 minutes, 1 hour, and 4 hours respectively, to find solutions that 

deviate from optimality by less than 1% on average. By developing sophisticated search 

strategies such as those underscored by the metaheuristics analyzed here one would aim 

to challenge state-of-the-art local search approaches in solving larger and more difficult 
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ATSP instances. Therefore, the absence of results for these more ambitious algorithm 

designs on the complete testbed of Table 1 somewhat limits the scope of our 

computational analysis. However, it is clear that our DR local search algorithm competes 

favorably with these advanced metaheuristic algorithms. Although not shown in our table, 

the MA [3] and GA [26] original references report high success rates in finding optimal 

solutions in the respective 20 runs and 100 runs performed by these algorithms on each 

test instance. By contrast, our DR algorithm succeeds in finding the optimal solution for 

all test instances while executing only 5 runs. Taking into account the differences 

between processors, GA and DR exhibit similar running times while MA appears to be 

slightly faster. MIMM-ACO, MM-ACO, EO, CGAS, and HGA show high variability of 

running times across problems and are relatively slower algorithms, though still 

displaying  high levels of effectiveness on their reduced testbed.  

 

4. Conclusion 

  
We report a comparative study of two major neighborhood structures for the ATSP, the KP 

specialized variant of the LK procedure suggested by Kanellakis and Papadimitriou [22], 

and the DR ejection chain method proposed in Glover [13]. For a meaningful analysis, we 

report results for a doubly-rooted ejection chain algorithm that follows the basic design 

described in [13] and establish comparisons with the implementations reported in 

Cirasella et al. [6]. Given the considerable advances in local search algorithms for the 

STSP relative to those available for the ATSP and the fact that any ATSP can be 

transformed into an equivalent STSP, attempts have been made to solve ATSPs using 

algorithms originally designed for the STSP. In order to include this type of solution 

approach in our analysis, we also compared our DR local search algorithm with the 

currently most effective LK variant for the STSP due to Helsgaun [16], which for the sake 

of achieving higher performance in solving ATSP instances has been further enhanced 

with an adaptive iterated procedure. 

 

Computational testing carried out on a standard ATSP test bank demonstrates that our 

DR method significantly outperforms the enhanced LK extension, establishing the merit of 

our contribution relative to both the original KP publication and the currently most 

advanced extension of this work for the ATSP. Not only does the DR approach dominate 

the local search instance of the LK method with respect to solution quality, but it 

generates solutions whose quality matches that obtained by the advanced Iterated LK 

procedures, while requiring significantly less computation time. Moreover, when 

comparisons are made with respect to solutions found by the best run on each instance 
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as opposed to the average of those runs, our DR algorithm finds optimal solutions in a 

fraction of the time required by other algorithms to find solutions that are often of inferior 

quality.  

 

It is appropriate to emphasize that our DR method allows for a relatively straightforward 

algorithmic implementation. This contrasts with recent studies of other algorithms, which 

rely heavily on metaheuristic search guidance to achieve higher performance on this more 

difficult asymmetric variant of the TSP. However, a comparative analysis with the latest 

and most advanced of these methods, embodying genetic algorithms, ant colony 

optimization and hybrids of these methods with local search, shows that our DR local 

search algorithm is highly effective compared with the best of these methods. While 

executing no more than five runs on each instance our DR algorithm finds all optimal 

solutions in less than two seconds on average.  

 

The promising performance of our doubly-rooted ejection chain method in solving hard 

ATSP instances suggests the merit of introducing more advanced metaheuristic guidance 

into our approach. For example, the recent findings that population-based methods do a 

good job of identifying arcs belonging to optimal solutions invite consideration of 

embedding our algorithm within a population-based framework. As originally suggested in 

Rego and Glover [31], approaches using adaptive memory constructs such as featured in 

scatter search and path relinking (e.g., [33, 38, 40]) appear particularly worth exploring in 

this regard.   
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