

Doubly-Rooted Stem-and-Cycle Ejection Chain
Algorithm for the Asymmetric Traveling
Salesman Problem

César Regoa*, Dorabela Gamboab, Fred Gloverc

a School of Business Administration, University of Mississippi, University, MS 38677, USA.

crego@bus.olemiss.edu

b CIICESI, Escola Superior de Tecnologia e Gestão de Felgueiras, Instituto Politécnico do

Porto, Apt. 205, 4610-156, Felgueiras, Portugal. dgamboa@estgf.ipp.pt

c Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, USA.

fred.glover@colorado.edu

Latest Revision: December 2015

Abstract – Ejection chain methods, which include the classical Lin-Kernighan (LK)
procedure and the Stem-and-Cycle (S&C) reference structure, have been the source of
the currently leading algorithms for large scale symmetric traveling salesman problems
(STSP). Although these methods proved highly effective in generating large
neighborhoods for symmetric instances, their potential application to the asymmetric
setting of the problem (ATSP) introduces new challenges that require special
consideration. This paper extends our studies on the single-rooted S&C to examine the
more advanced doubly-rooted (DR) reference structure. The DR structure, which is
allied both to metaheuristics and network optimization, allows more complex network-
related (alternating) paths to transition from one tour to another, and offers special
advantages for the ATSP. Computational experiments on an extensive testbed exhibits
superior performance for the DR neighborhood over its LK counterpart for the ATSP.
We additionally show that a straightforward implementation of a DR ejection chain
algorithm outperforms the best local search algorithms and obtains solutions
comparable to those obtained by the currently most advanced special-purpose
algorithms for the ATSP, while requiring dramatically reduced computation time.

Keywords: traveling salesman problem, ejection chains, local search, heuristics,
variable-depth neighborhoods, combinatorial optimization

* Corresponding author

 2

1. Introduction

The classical Traveling Salesman Problem (TSP) may be described in the setting of a

collection of cities having specified distances between them. The objective is to determine

the shortest tour that starts from an arbitrary city, visits each remaining city exactly

once, and then returns to the origin. In graph theory, the problem can be defined on a

graph (,)G V A= , where 1{ ,..., }nV v v= is a set of n vertices (nodes) and

{(,) | , , }i j i jA v v v v V i j= ∈ ≠ is a set of arcs, together with a non-negative cost (or

distance) matrix = [(,)]i jC c v v associated with A. The problem is called the symmetric TSP

(STSP) if =(,) (,)i j j ic v v c v v for all (,) ,i jv v A∈ and the asymmetric TSP (ATSP) otherwise.

Elements of A are often called edges (rather than arcs) in the symmetric case and may be

denoted by {�� , ��} rather than (�� , ��) since they are unordered rather than ordered pairs.

The STSP (ATSP) consists in determining the Hamiltonian cycle (circuit), often simply

called a tour, of minimum cost.

The version of the STSP in which distances satisfy the triangle inequality

(+ ≥(,) (,) (,)i j j k i kc v v c v v c v v for all distinct ∈, ,i j kv v v V) is the most studied special case of

the problem, notably including the particular instance where V is a set of points in a 2-

dimensional plane and (,)i jc v v is the Euclidian distance between iv and .jv The ATSP is

more general than the STSP and likewise embraces a wide range of applications

particularly arising in scheduling optimization in manufacturing [5] and in vehicle routing

in distribution and transportation networks [11, 21, 35]. These basic applications are

significantly expanded by the variety of complex real-world vehicle routing problems

(encompassing time-windows and other hard constraints and multiple vehicles) that can

be solved by first re-casting them as an ATSP using polynomial-time transformations [23,

24, 36].

The ATSP is also much more difficult to solve than the STSP for both exact and

approximation algorithms [2, 34]. Perhaps due to this difficulty the research on TSP has

been mostly focused on the STSP, and algorithm developments are much less advanced

for the ATSP. Nevertheless, remarkable progress in local search algorithms for the ATSP

has come about by drawing on generalizations of the most powerful neighborhood search

methods for the STSP, specifically the ejection chain methods represented by the classical

Lin-Kernighan (LK) procedure [25] and the Stem-and-Cycle (S&C) reference structure [12].

(For an extensive coverage of these methods we refer the reader to Rego et al. [30].)

3

In the general context of combinatorial optimization, ejection chains are constructions to

create variable-depth neighborhoods efficiently for local search procedures. The

underlying technique consists of decomposing a very large neighborhood into a sequence

of component neighborhood structures that can be evaluated in polynomial time. Each

component neighborhood structure in the sequence does not usually correspond to a

feasible solution but constitutes a reference structure that permits a feasible solution to

be obtained efficiently. The S&C is a fundamental structure in a number of other

reference structures used in the creation of ejection chain methods. (For algorithm

designs and implementations of the S&C reference structure see Pesch and Glover [27],

Rego [29], and Gamboa, Rego and Glover [9, 10].)

This paper explores a generalization of the S&C reference structure for traveling salesman

problems called the Doubly-Rooted (DR) S&C (Glover [13]) that has special advantages for

the ATSP. These neighborhoods exhibit a special property called combinatorial leverage,

which enables solutions dominating exponential alternatives to be obtained with

polynomial effort. Excellent studies on the domination analysis of these neighborhoods for

the ATSP can be found in Punnen and Kabadi [28] and Gutin and Yeo [15].

A key contribution of this paper may be viewed in the context of two earlier publications

that have deservedly received wide acclaim. The first concerns the original proposal of the

now-famous Lin-Kernighan (LK) method for the Symmetric TSP [25]. The second, which is

yet more germane, is a straightforward adaptation of the LK algorithm to the Asymmetric

TSP by Kanellakis and Papadimitriou [22]. In the latter publication, the authors base the

relevance of their contribution on results they obtain for ATSP instances ranging in size

from 30 to 90 nodes and suggest that the algorithm is very suitable for the solution of

very large instances of the ATSP. This specialized LK procedure (referred in the literature

by the KP method) has been a mainstay of ATSP references for over three decades. An

enhanced implementation of the method that includes advanced data structures and

various implementation techniques to accelerate the search has been undertaken by

Cirasella et al. [6] to address instances up to 1000 nodes or more. The Cirasella et al.

paper is particularly devoted to showing the potential of this specialized LK variant to

solve instances that are currently considered large-scale in the asymmetric setting.

Our main objective here is to provide a comparative study of the DR neighborhood

structure and the generalized LK neighborhood underscored in the KP method [22] and

4

more recently used in the current state-of-the-art local search algorithm for the ATSP by

Cirasella et al. [6]. Additionally, in order to place our developments in a broader

perspective we extend our computational analysis to include comparisons with the latest

metaheuristic advances for the ATSP involving Memetic Algorithms [3], Ant Colony

Optimization [1, 37], Extremal Optimization [4], Genetic Algorithms [26], and hybrids of

these methods [7, 39] all aimed at extending local search with advanced search guidance.

The remainder of this paper is organized as follows. Section 2 presents the doubly-rooted

ejection chain method and describes the algorithm. Section 3 derives a comparative

analysis of the DR with LK neighborhood structures and other state-of-the-art algorithms

for the ATSP. Section 4 summarizes our findings and provides directions for further

research.

2. The Doubly-Rooted Stem-and-Cycle Algorithm

The general structure of the algorithm can be briefly described as follows. Starting from

an initial tour, the algorithm attempts to improve the current solution iteratively by

means of a network (or graph) related subpath ejection chain method, which generates

moves coordinated by a doubly-rooted stem-and-cycle reference structure.

2.1. The Doubly-Rooted Reference Structure

The doubly-rooted reference structure generalizes the single-rooted stem-and-cycle

reference structure in two basic forms: a bicycle in which the roots are connected by a

single path, joining two cycles and a tricycle in which the two roots are connected by three

paths, thereby generating three cycles. Our terminology may be understood by reference

to Figure 1, which illustrates the basic S&C reference structure with root r and tip node t

and the two forms of the DR structure with root nodes denoted by r1 and r2.

In both the S&C structure and the DR structure there are exactly three nodes linked to

each root; however special cases may occur leading to degenerate forms of these

structures. If the tip and root nodes coincide in the S&C then only two nodes are linked to

the root and the structure corresponds to a feasible tour as shown in Figure 2(a).

Likewise, if the two roots coincide in the DR structure, then four nodes are linked to that

root originating a bicycle structure with the two cycles connected by the root node as

shown in Figure 2(b).

5

The nodes adjacent to the roots are called subroots and are divided into two classes: cycle

subroots and non-cycle subroots, where the latter are those that lie on the path between

the two roots of a bicycle. Cycle and non-cycle subroot nodes are indicated by grey and

black shading, respectively. We do not highlight the non-cycle subroot in the S&C as it

has no special use in this structure.

Figure 1. Single-rooted and doubly-rooted S&C reference structures.

Figure 2(a). Degenerate single-rooted

structure.

Figure 2(b). Degenerate doubly-rooted

structure.

In an ejection chain process we distinguish ejection moves that transform one reference

structure into another of the same type from trial moves that create a valid solution

structure (i.e., a TSP tour) from a reference structure. Consequently, the structure

obtained with a trial move is called a trial solution. From this point on we focus on the DR

structure and refer to the S&C whenever relevant for the explanation of the doubly rooted

ejection chain process. The interpretation and uses of these structures will become clear

in the process.

6

Ejection Moves

The rules to transition between structures are given by two types of ejection moves.

Cycle subroot ejection move: Select a cycle subroot s and an associated root r. Add an

arbitrary new edge (s, j) (not in the current structure) and delete the edge (s, r). After the

step, j becomes a root (and r is no longer a root unless the two roots coincided before the

step).

Non-cycle subroot ejection move: Select a non-cycle subroot s and an associated root r.

Add a new edge (s, j) such that j lies on the cycle in common with r, and delete the edge

(s, r). Node j becomes a new root (and r is no longer a root).

These moves are exactly the same for both the symmetric and asymmetric settings,

though in the asymmetric case, the added and deleted arcs must be directed the same

relative to the subroot s (i.e., the added and deleted pair is either (s, j) and (s, r) or (j, s)

and (r, s)). Figure 3 depicts the application of cycle and non-cycle ejection moves to the

DR structures of Figure 1. In the figure, grey lines denote edges that are added by the

move and dotted lines denote edges to be deleted.

Figure 3. Examples of cycle and non-cycle ejection moves.

Trial Solutions

The trial solutions available to the doubly-rooted structure are those generated by the

union of the trial solutions available to the single-rooted stem-and-cycle (S&C) structure

obtained by deleting any edge linking a root node to a cycle subroot. Such a subroot

becomes the tip of the S&C, while the (root) node that remains with three incident edges

becomes the S&C root. Trial moves are created by linking the tip to one of the subroots

and deleting the arc that unions the subroot to the root, giving rise to two possible trial

7

solutions associated with each subroot. Figure 4 illustrates the creation of a possible trial

solution associated with a single-rooted S&C structure obtained from the bicycle and

tricycle doubly-rooted S&C of Figure 1. In the diagrams, nodes t1 and t2 specify the tip

nodes associated with the two S&C structures from which the trial solutions are obtained.

Figure 4. Examples of trial moves on bicycle and tricycle structures.

In fact, the trial solutions that result by transforming a cycle subroot s into a tip t, for

each such s associated with a given root r, are the same as the trial solutions similarly

produced from the subroots of the other root, and hence attention can be restricted to

only one of the two sets of subroots for this purpose. Thus, each cycle subroot of a given

root produces two trial solutions. The enriched pool of such trial solutions, together with

an enriched set of moves for transitioning from one reference structure to the next,

provide the potential advantage of the doubly-rooted structure over the single-rooted

stem-and-cycle structure. For the asymmetric case the advantage is provided by the fact

that a subset of these possibilities is capable of preserving tour orientation, which gives

rise to exactly one possible trial solution in a bicycle structure and two trial solutions in a

tricycle. These orientation preserving moves are shown in Figures 5(a) and 5(b).

Figure 5(a). Trial move on a

bicycle structure.

Figure 5(b). Trial moves on a tricycle structure.

8

2.2 The Ejection Chain Procedure

In the design of stem-and-cycle ejection chain procedures we impose what we call

legitimacy restrictions in order to achieve two main purposes: (1) to prevent the method

from visiting solutions already inspected during the ejection chain process; (2) to generate

special forms of alternating paths which have proved useful in several classical graph

theory problems. For the first purpose it is sufficient to stipulate that no deleted edge is

added back during the construction of the chain. The second purpose deserves some

additional attention.

Alternating Path Considerations

In classical alternating path methods in graph theory, and in neighborhood search

processes related to them, the customary approach is to restrict the edges qualifying for

deletion to be edges of the starting solution. Methods that use this approach, which

include the classical LK procedure, may be viewed as static alternating path methods,

because new edges introduced during the construction of the chain are exempt from

deletion. However, certain neighboring solutions cannot be obtained except by generating

alternating paths in which previously added path edges are also candidates to be

dropped. Thus, in contrast to classical approaches, this produces a dynamic alternating

path method. In fact, the dynamic alternating paths provided by single- and doubly-rooted

S&C structures provide the ability to reach any TSP tour by a succession of moves

starting from any other tour, in contrast to the LK neighborhood that can fail to find

certain types of improved tours even if they are close to the current tour, as it will be

discussed later. As proved in Glover [13], this ability to reach any possible tour is retained

by adding a simple “non-reversal” condition, which prevents an edge from being deleted if

is inserted immediately after deleting another edge that was previously inserted. These

restrictions define the legitimacy conditions for the S&C algorithm described in Rego [29],

and are also incorporated into the present doubly-rooted S&C algorithm.

A general design of the doubly-rooted stem-and-cycle neighborhood search procedure can

be described as in Figure 6, where we define a legitimate neighborhood for a node ,iv

denoted by ()iLN v , as the subset of nodes of G that do not violate the legitimacy

restrictions identified above.

9

Step 0. Initialization

(a) Initialize a legitimate neighborhood for all nodes.
(b) Denote the starting solution by �
(c) Select the initial root nodes ��� and ��	

(d) Create the initial
� structure:
Select a cycle subroot node for each root ��� and ��		and initialize the values of all other

subroot nodes.
(e) Set
 = 0 and � = maximum	number	of	levels	of	an	ejection	chain.

Step 1. Generate the ejection chain

(a) Ejection Move:

For each subroot �#$ compute the value of the ejection move for each node �� ∈ �&(�#$)

as follows:)* = +(�#$, ��) − +(�#$, ��$), where ��$ is the root node associated with �#$. If �#$

is a non-cycle subroot, then the ejection move is only possible if �� ∈ -.*, where -.* is

the cycle in common with ��$.

(b) Select the node ��∗ that yields the minimum)* value and keep track of the subroot

node �#$ considered for the move.

(c) Trial Move:
Consider one of the root nodes ��, and the three possible S&C structures that can be

obtained by deleting an edge (��,�#0), where �#0(1 = 1,2,3) represents each subroot

associated with ��;

Compute the value of the trial moves associated with each cycle subroot �5#0(1 = 1,2) of

each S&C structure and choose one that minimizes 6* = +(�7 , �5#0) − +(�5#0 , ��), where �7

represents the tip node of considered S&C structure. The solution cost change is given
by ∆*=)* + 6*.

(d) Keep track of the level
∗ that produces the best trial tour so far and record the subroot

node involved in the trial move.
(e) Update �&.

(f) Set
 =
 + 1 and set ��0 = ��∗, where ��0 is the root affected by the move.

(g) If
 < 	� and �& is not empty return to Step 1. Otherwise go to Step 2.

Step 2. Perform the compound move

(a) Apply to � each ejection move considered in the ejection chain up to the level
∗.

(b) Complete the update of � by executing the trial move for the level
∗.

Figure 6. An iteration of the doubly-rooted stem-and-cycle procedure.

Complexity

The complexity of the doubly-rooted stem-and-cycle (DR) ejection chain procedure is

determined as follows. For selecting an ejection move 2(3)n − operations may be

considered for each subroot, hence a maximum of 6 2(3)n× − operations in total. Six

additional operations are necessary to evaluate all possible trial moves associated with

that ejection move (i.e. two operations for each of the three subroots considered for trial

move evaluation). Hence, one level of a DR ejection chain may be performed in ;(<) time.

According to the legitimacy restriction the number of levels of an ejection chain is

10

bounded by (1) / 2 ;n n n− − that is, all the edges may be deleted only once, except the

number of the edges corresponding to the cardinality of a solution. Thus, the overall

complexity of an ejection chain evaluation may reach 3
().O n However, since the best trial

solution is usually found at a relatively lower level, this effort can be notably reduced. The

theoretical justification for this remark may be found in the theorem of Glover [12] which

proves that, by using a subpath ejection method like the one used by our algorithm,

subject to the restrictions that we consider as legitimate, it is always possible to generate

any neighboring solution that differs from the starting solution by m edges by adding less

than 2m edges. Since two neighboring solutions can differ at most by n edges, then 2n

may define an upper bound on the number of levels of an ejection chain and therefore, L

is considered a user-supplied parameter. Hence, the real worst case complexity for one

iteration of the algorithm may be considered as 2
().O n

2.3 The Ejection Chain Algorithm

As stated earlier the LK procedure relies on a static alternating path construction, which

constitutes a limitation of the method in relation to more general ejection chain methods

that have the ability to generate neighborhoods produced by dynamic alternating paths. It

is well known that the paths generated by the LK neighborhood are unable to reach some

tours that differ only by 4 edges from the current tour, which can otherwise be obtained

by the so-called double-bridge neighborhood, originally suggested as a supplement of the

basic LK procedure and likewise considered in the KP variant of the method [22] for the

ATSP. An interesting theoretical analysis provided in Funke, Grünert and Irnich [8]

shows that even a generalization of the LK approach that incorporates generalized

alternating paths cannot reach solutions accessible to the S&C neighborhood.

The KP method for the ATSP starts with a type of LK search based on sequences of special

3-opt moves (with segment reordering) rather than 2-opt moves (with segment reversals)

used in the original LK for the STSP. When the LK search fails to improve the solution,

the method searches for an improving 4-opt double-bridge move (with no reversals). Then

KP returns to LK search and iterates in this manner until neither of the searches

improves the tour.

In order to assess the effectiveness of the doubly-rooted S&C neighborhood structure

compared to the KP variant, we have adopted for our implementation a similar alternating

strategy between the ejection chain search and the 4-opt double-bridge neighborhood. We

11

should stress that our 4-opt search is made separate from the basic ejection chain

process only for the sake of comparisons since the doubly-rooted S&C neighborhood can

also generate double-bridge moves. We should also note that the 4-opt search used in our

DR algorithm corresponds to the efficient 2
()O n procedure of Glover [14] used in its recent

implementations [6] analyzed here, as opposed to the potentially 4
()O n procedure

considered in the original KP algorithm [22]. Our implementation of the 4-opt double-

bridge procedure adopts the compact version devised by Johnson [17].

3. Computational Analysis

Our tests reported here employ a straightforward implementation of an ejection chain

algorithm based on the DR structure for the ATSP. Comparisons are established with the

KP variant of the LK approach proposed by Kanellakis and Papadimitriou [22] for the

ATSP. The KP implementation analyzed in this paper is due to Johnson and McGeoch and

described in Cirasella et al. [6], though in the latter, the authors only report results for a

more advanced implementation of the algorithm based on the so-called Iterated LK

framework, denoted herein by iKP. The computational study of the basic KP is reported in

[18].

A number of attempts have been made to solve ATSPs using state-of-the-art algorithms

for the STSP by first transforming the ATSP into an equivalent STSP instance. To address

this approach the currently most effective LK variant for the STSP due to Helsgaun [16],

herein denoted by H-LK, is also included in our analysis. Results for this advanced H-LK

algorithm are also reported in [18].

After completing comparisons with all LK variants whose results have been reported for

the ATSP, we complete our analysis by establishing comparisons with the latest and most

advanced metaheuristic algorithms for the ATSP.

3.1. Comparison with Lin-Kernighan Variants

Table 1 reports the computational results for all ATSP instances in the TSPLIB [32]

testbed. The first two columns give the problem name and its size. The next columns

show for each algorithm the relative percentage deviation from the optimal solution value,

and the running time (in seconds) necessary to find those solutions. (Dashed cells

indicate that results are not available for the corresponding problems and algorithms, and

the optimal solutions found are highlighted in boldface figures.) The summary at the

12

bottom of Table 1 provides the average percent deviations from optimality, the average

running times and the number of optimal solutions found over the set of problems tested

by the corresponding algorithm.

The results for the KP, iKP, and H-LK algorithms are averages over 5 or more

(independent) runs for each instance (cf. [6], pp. 14) obtained by choosing a different city

to initiate the nearest neighbor heuristic used to construct a starting tour (cf. [6], pp. 21).

Runs were performed using a Silicon Graphics Power Challenge machine with 31 196

MHz MIPS R10000 processors, 1 MB 2nd level caches and 7.6 GB of main memory shared

by all processors. The implementation is a serial one; therefore if no implicit parallelism is

employed by the compiler the algorithm presumably uses only one of the processors

available. For comparison purposes, results for the DR algorithm are obtained in a similar

manner except that only 5 runs were used for each instance and all runs were carried out

using an Intel Core Duo 2.66 GHz processor with 3 GB RAM.

In order to accurately compare computational times between algorithms, we provide

normalized running times derived from runs of the standard benchmark code available in

the DIMACS Implementation Challenge website [20]. Using the Hungarian method

benchmark code as suggested in [18] for the case of the ATSP, we encountered relative

factors of 1.500, 3.5714, and 4.6193 for n = 100, 316 and 1000, respectively; hence we

found 3.2 a reasonable compromise for the actual factors of the two machines.

Before discussing the results, we point out a number of important considerations. The

only performance metric used in the literature for all LK variants consists of averages

computed over a very small number of runs, which makes comparison between

algorithms very difficult. Clearly, a sample size of 5 runs is not sufficiently large for the

assessment of a randomized algorithm to be statistically significant, but may be

acceptable if not much variability is found in sufficiently large experiments. Otherwise,

there is a good deal of uncertainty concerning how representative the averages may be,

including the degree to which they may have been if different cities had been chosen to

initiate the algorithm, and raising doubt about the quality of the best solution found over

the multiple runs.

13

Percentage Excess over Optimal Normalized Running Time

Number of Runs 5+ 5+ 5+ 5 5 5+ 5+ 5+ 5 5

Instance n

KP iKP H-LK DR
Best Run

DR
Average

KP iKP H-LK DR
Best Run

DR
Average

atex1 16 — 0.44 — 0.00 0.00 — 0.07 — 0.00 0.00
atex3 32 — 0.03 — 0.00 0.00 — 1.69 — 0.00 0.04
atex4 48 — 0.00 — 0.00 0.99 — 2.22 — 0.29 0.69
atex5 72 — 0.15 — 0.08 1.10 — 7.77 — 1.57 2.18
atex8 600 4.25 0.99 0.82 1.55 2.99 3.38 2112.70 123.0 1233.63 898.85
big702 702 2.10 0.21 0.41 0.58 0.77 6.04 1136.52 119.0 579.20 600.74
br17 17 — 0.00 — 0.00 0.00 — 0.11 — 0.00 0.00
code198 198 0.00 0.00 0.00 0.00 0.00 0.54 114.24 6.5 0.03 0.04
code253 253 0.10 0.00 0.28 0.00 0.00 1.09 267.14 24.5 0.00 0.88
dc112 112 0.39 0.31 0.28 0.19 0.30 15.47 904.31 4.5 4.93 4.95
dc126 126 0.65 0.64 0.54 0.08 0.14 22.69 1533.84 5.5 13.25 10.68
dc134 134 0.57 0.55 0.02 0.43 0.55 13.43 714.98 6.5 2.59 5.73
dc176 176 0.67 0.59 0.49 0.61 0.79 20.48 1448.29 105.0 36.00 28.78
dc188 188 0.59 0.52 0.13 0.00 0.24 12.98 674.15 28.5 1.44 27.03
dc563 563 0.79 0.78 0.12 1.29 1.37 111.95 4379.74 2231.5 429.06 352.58
dc849 849 0.62 0.61 0.23 0.64 0.66 114.80 5666.96 2180.0 9.98 263.96
dc895 895 0.60 0.58 0.25 0.57 0.65 144.43 7214.80 22077.0 3408.35 2399.71
dc932 932 0.26 0.27 0.26 0.10 0.13 119.17 4611.56 72373.0 2699.78 2139.80
atex1 53 — 0.01 — 0.00 0.99 — 7.99 0.26 0.59
atex3 70 — 0.02 — 0.00 0.33 — 4.83 0.90 1.64
atex4 101 3.11 0.13 0.00 0.00 0.27 0.04 0.62 1.0 5.34 1.40
atex5 111 4.04 0.12 0.00 0.00 0.18 0.04 1.00 1.0 3.20 2.54
atex8 121 3.12 0.33 0.00 0.00 0.06 0.05 1.70 1.0 1.60 3.84
big702 131 2.16 0.27 0.00 0.00 0.16 0.06 1.52 1.0 0.74 3.95
br17 141 3.15 0.21 0.00 0.00 0.26 0.06 1.23 1.5 5.86 10.73
code198 151 4.43 0.40 0.00 0.00 1.96 0.07 1.18 1.0 23.78 11.88
code253 161 5.89 0.24 0.00 0.00 1.45 0.07 1.43 2.0 4.96 6.73
dc112 171 4.44 0.45 0.00 0.00 0.70 0.09 1.52 2.5 13.82 15.12
dc126 34 — 3.02 — 0.00 0.82 — 0.11 — 0.00 0.10
dc134 36 — 0.03 — 0.00 0.08 — 0.11 — 0.06 0.12
dc176 39 — 0.00 — 0.00 0.08 — 0.12 — 0.03 0.10
ftv44 45 — 1.30 — 0.00 0.35 — 0.12 — 0.03 0.22
ftv47 48 — 0.49 — 0.00 0.14 — 0.17 — 0.06 0.16
ftv55 56 — 0.00 — 0.00 0.00 — 0.25 — 0.10 0.15
ftv64 65 — 0.33 — 0.00 0.16 — 0.37 — 0.06 0.13
ftv70 71 — 0.08 — 0.00 0.65 — 0.30 — 0.16 0.76
ftv90 91 — 0.08 — 0.00 0.00 — 0.47 — 0.54 0.96
kro124p 100 — 1.28 — 0.00 0.60 — 0.34 — 4.03 4.86
p43 43 — 0.01 — 0.00 0.01 — 23.81 — 0.10 0.22
rbg323 323 0.78 0.30 0.00 0.00 0.05 3.71 414.53 46.5 24.32 40.72
rbg358 358 1.50 0.79 0.00 0.00 0.03 3.33 342.26 120.5 31.30 74.93
rbg403 403 0.22 0.11 0.00 0.00 0.00 9.00 743.99 221.5 9.38 33.92
rbg443 443 0.11 0.09 0.00 0.00 0.03 11.74 908.12 154.0 2.88 14.22
ry48p 48 — 1.92 — 0.00 0.61 — 0.16 — 0.86 0.44
td100.1 101 0.00 0.00 0.00 0.00 0.00 0.20 39.90 0.5 0.48 1.13
td1000.20 1001 0.01 0.00 0.00 0.00 0.00 7.29 720.57 140.5 438.30 814.89
td316.10 317 0.00 0.00 0.11 0.00 0.00 3.87 1950.07 24.5 2.82 4.98
Average 28 Instances 1.59 0.34 0.14 0.22 0.49 22.36 1282.46 3571.75 320.96 277.67
Average 47 Instances — 0.40 — 0.13 0.44 — 765.10 — 191.41 165.70
Optimal 28 Instances 3 5 15 18 6
Optimal 47 Instances — 9 — 36 11

Table 1: Comparative analysis of ejection chain algorithms.

14

Additional confusion arises from the fact in some instances more than 5 runs are allowed,

but without explanation of this exception to the testing protocol. In [6] the authors

promised to provide full details in the final paper [18] with respect to how the experiments

have been conducted, but unfortunately this did not happen. Results reported for the KP

algorithm are likewise limited, in this case by examining only a subset of the standard

TSPLIB testbed.

To account for these difficulties and to ensure that we do not give our DR algorithm an

unfair advantage, we have limited the number of our runs to exactly five for all instances.

Beyond this, however, we test our algorithm on the complete testbed of 48 real-world

instances of TSPLIB, and in addition to the average results over the five runs we report

the solution found by the best of those runs. We argue that although the average solution

quality over a specified number of runs is a relevant measure, the best solution found is a

more appropriate metric of performance when a small number of runs is considered. In

real applications, where time to conduct a large number of runs is not always available,

one usually wants to implement the best solution found within the allotted time, or to

present the decision maker with a subset of the best solutions for further consideration.

Since the best solution found was not given in the experiments reported in [6] and [18] we

assume for the sake of the analysis that all runs on individual instances produced

solutions of similar quality (since otherwise the conclusion on the relative performance

between the LK variants would have been defective by the absence of this information,

especially if the optimal solution had been found in at least one of the runs). Although our

DR algorithm exhibits a similar behavior on all test runs, with little variability in solution

quality, it often manages to find the optimal solution in at least one of these runs for a

given instance; hence, we consider it informative to report the solution and computation

time of our best run.

For an appropriate comparative assessment, we also note that the KP and the DR

algorithms do not belong to the same class of heuristics as the iKP and H-LK algorithms,

which reapply their core algorithm multiple times and take one or more orders of

magnitude longer to run on the larger instances. In particular, following the classification

established in the DIMACS TSP Implementation Challenge [20] and consistent with [18,

19], the KP and DR algorithms may be considered local search procedures, while the iKP

and H-LK types of algorithms are categorized as iterated (chained or repeated) local

search. Iterated local search methods expend greater effort to explore the solution space

more thoroughly and so are expected to find better solutions to compensate for their

substantially increased running times. However, as our results make apparent, the

15

expectation of finding better solutions proves valid only in relation to the local search KP

method, while our new DR algorithm obtains exceedingly high quality solutions without

the expenditure of such additional effort.

We now discuss a few of the main conclusions that can be inferred from the results

reported in Table 1. First, our DR algorithm discloses itself to be far more effective and

robust than the KP algorithm. Out of 28 instances for which results are available for KP,

in only 4 instances did the KP algorithm manage to find tours that are on average slightly

better than the averages found by the DR algorithm and in only 2 instances did these

averages surpass the quality of the solutions found on our best run. By contrast, in some

cases the average quality of solutions found by the DR algorithm exceeded that of the KP

algorithm by more than 4% (a significant amount relative to differences in TSP tours) and

our best solutions exceeded these KP average solutions by almost 6%. Although the non-

iterated form of KP terminates its search much earlier than DR, the solution quality of the

KP approach is seriously compromised. For the ftv* instances, the KP algorithm produces

solutions that on average deviate from optimality by 3.79% compared to an average

deviation of only 0.63% produced by our DR algorithm. Moreover, the best of our runs

finds the optimal solution for all instances of this class. For the other instances in this

reduced testbed the KP algorithm produces tours of high quality, although the DR

algorithm still exhibits superior performance. It is possible to predict that this relative

advantage of our DR algorithm over the KP algorithm would be even more significant if KP

had been tested on the remaining 19 instances of the standard testbed. These instances

were omitted in [18] due to the imposed size limit of less than 100 cities, but it is

noteworthy that these instances are not necessarily easy even for the advanced iKP

variant of this KP algorithm. In particular, for instances as small as 34 cities (ftv33), the

long running iKP procedure produces solutions that are on average more than 3% away

from optimality and is unable to produce a zero gap even for the smallest of these

instances (atex1) containing only 16 cities. Indeed, only in 4 out of the 19 instances did

iKP manage to find a zero gap from optimality. Comparing DR with iKP on the basis of

average solution quality over the multiple runs and on the whole set of 47 instances, the

DR algorithm obtains the best average solution quality on 11 instances while iKP finds it

on 10. Among these, a 0.00% gap from optimality is achieved on 9 instances by the iKP

algorithm and on 11 instances by the DR algorithm. Overall, the iKP and DR algorithms

find an equal number of 19 better solutions relative to each other and match on 9

instances. In sum, the two algorithms exhibit similar average solution quality over the

whole test set. Hence, in a comparison solely on the basis of the average solution quality

over the multiple runs neither of the two algorithms appears to dominate the other.

16

However, it is apparent that the iKP algorithm requires significantly more computational

time than the DR algorithm, regardless of possible imperfections in running time

normalization relative to the computers where the algorithms were run. For instance, on

the rbg* problems the DR algorithm finds its best tours in a fraction of the time (10% or

less) required by the iKP algorithm to find its best tours, whose quality does not match

that obtained by the DR method. In some cases, as illustrated by rgb403 and rbg443, the

DR algorithm requires less than 5% of the time required by the iKP algorithm. Differences

in speed of a similar order of magnitude may be seen in the dc* and td* instances, where

on dc126 and td316.10, for example, these relative percentages may translate to over 25

minutes for the iKP compared to less than 10 seconds for the DR algorithm to find tours

of the same or better quality.

In sum, the DR algorithm not only outperforms the basic KP algorithm but is comparably

effective and considerably more efficient than its advanced iKP variant. This relative

advantage is especially relevant considering the fact that our algorithm does not take

advantage of the various speed-up optimizations used in the KP and iKP algorithms. The

performance of the DR algorithm is additionally noteworthy when comparisons are made

relative to its best run for each instance. As shown in Table 1, the average excess over the

optimum tour length achieved by this best run is 0.13%, which is significantly lower than

the 0.40% achieved by iKP while consuming a much longer computation time than that

required by the DR algorithm. Also, the DR algorithm finds 36 optimal solutions out of the

47 instances compared to only 9 optimal solutions found by the iKP algorithm.

Comparing with the H-LK algorithm we should first note that results on individual

instances as reported in [18] are only available for the reduced testbed of larger instances;

however, the same study (cf. [18], pp. 450) points out that this algorithm obtains

solutions within 0.3% of optimal within a (normalized) second for the omitted instances

with less than 100 cities. For these same instances the average deviation from optimal of

our DR algorithm is 0.36% obtained in 0.7 (normalized) seconds, while the best of our

runs finds the optimal solution for all but one of these instances (atex8) for which the

solution still falls within a 1% gap from optimal. As a result, our best run produces a

0.00% gap in 0.48 (normalized) seconds on average. While both algorithms produce

solutions of similar quality on average for these 19 instances, our DR algorithm appears

to be more efficient, especially considering that the running time to perform the ATSP to

STSP transformation required by the H-LK algorithm is not included in the times reported

in [18]. For the remaining 28 instances, the H-LK algorithm produces solutions of better

quality than our DR algorithm (0.14% versus 0.49% excess over optimal) on average, but

17

this difference in quality comes at the expense of a computation time that is more than an

order of magnitude greater than that used by our DR algorithm. Finally, a comparison

with our best run shows that although the excess over optimal obtained by H-LK (0.14%)

is still lower than that of DR (0.21%), this difference is not significant, especially

considering that the DR algorithm was capable of finding 18 optimal solutions while H-LK

could only find 15 of them.

3.2. Comparisons with Advanced Metaheuristic Algorithms

We now extend our computational analysis by establishing comparisons with several of

the most advanced metaheuristic algorithms in the ATSP literature. Table 2 provides

results for the following additional algorithms:

• Model-Induced Max-Min Ant Colony (MIMM ACO) [1]

• Max-Min Ant Colony (MM ACO) [37]

• Extremal Optimization (EO) [4]

• Cooperative Genetic Ant System (CGA) [7]

• Memetic Algorithm (MA) [3]

• Hybrid Genetic Algorithm (HGA) [39]

• Genetic Algorithm (GA) [26]

The results shown in Table 2 are a compilation of two recent computational studies. The

results for MIMM-ACO, MM-ACO, EO, and CGAS were obtained from Bai et al. [1] and

refer to averages over 25 runs carried out using a Pentium(R) Dual 1.80 GHz processor

with 2 GB RAM. Results for MA, HGA, and GA are from Nagata and Soler [26]. In the

latter, the authors report results for their GA with population sizes of 100 and 300,

referred to here by GA-100 and GA-300, respectively. The HGA and GA results are

averages of 100 runs using a Pentium 1.6 GHz processor and a Xeon 2.93 GHz processor,

respectively, while MA results are for 20 runs using a Pentium 1.7 GHz processor. As for

our DR algorithm we now provide the actual machine times obtained using the same Intel

Core Duo 2.66 GHz processor with 3 GB RAM.

 18

 Percentage Excess over Optimal Running Time (seconds)

Number of Runs 5 5 25 25 25 25 20 100 100 100 5 5 25 25 25 25 20 100 100 100

Instance n

DR

Best Run

DR

Average

MIMM

ACO

MM

ACO

EO CGAS MA HGA GA

100

GA

300

DR

Best Run

DR

Average

MIMM

ACO

MM

ACO

EO CGAS MA HGA GA

100

GA

300

br17 17 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.00 0.00 0.05 1.9 0.00 0.00

ft53 53 0.0000 0.9906 0.00 0.22 0.00 0.35 0.00 0.00 0.0060 0.0000 0.08 0.18 3.53 3.17 3.85 6.78 0.20 41.2 0.03 0.09

ft70 70 0.0000 0.3336 0.00 1.71 0.00 0.00 0.03 0.00 0.0010 0.0000 0.28 0.51 9.85 10.15 8.93 15.32 0.86 83.6 0.04 0.14

ftv100 101 0.0000 0.2685 0.00 0.0030 0.0000 1.67 0.44 0.40 0.06 0.29

ftv110 111 0.0000 0.1839 0.02 0.0070 0.0000 1.00 0.79 0.98 0.08 0.36

ftv120 121 0.0000 0.0554 0.14 0.0160 0.0000 0.50 1.20 2.00 0.1 0.37

ftv130 131 0.0000 0.1560 0.01 0.0100 0.0000 0.23 1.23 1.30 0.11 0.42

ftv140 141 0.0000 0.2562 0.08 0.0120 0.0000 1.83 3.35 2.11 0.12 0.53

ftv150 151 0.0000 1.9609 0.01 0.0070 0.0000 7.43 3.71 1.54 0.15 0.56

ftv160 161 0.0000 1.4536 0.02 0.0010 0.0000 1.55 2.10 2.04 0.17 0.65

ftv170 171 0.0000 0.7042 0.05 0.25 0.28 0.00 0.05 0.02 0.0020 0.0000 4.32 4.73 108.28 96.73 103.27 128.76 2.78 68.3 0.19 0.69

ftv33 34 0.0000 0.8243 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.03 6.12 9.75 4.78 28.73 0.05 0.01 0.06

ftv35 36 0.0000 0.0815 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.02 0.04 5.35 15.37 7.35 21.35 0.08 15.6 0.02 0.05

ftv38 39 0.0000 0.0784 0.00 0.00 0.00 0.00 0.10 0.0000 0.0000 0.01 0.03 8.64 10.96 7.83 29.79 0.26 0.02 0.08

ftv44 45 0.0000 0.3472 0.00 0.00 0.00 0.00 0.44 0.2110 0.0372 0.01 0.07 9.37 12.35 8.21 37.63 0.36 0.02 0.07

ftv47 48 0.0000 0.1351 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.02 0.05 7.52 10.08 9.37 29.7 0.13 90.3 0.02 0.07

ftv55 56 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.03 0.05 6.38 18.63 5.06 18.41 0.16 125.6 0.03 0.1

ftv64 65 0.0000 0.1631 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.02 0.04 15.37 27.65 16.42 29.25 0.24 101.2 0.04 0.17

ftv70 71 0.0000 0.6462 0.03 5.78 0.72 0.75 0.01 0.00 0.0000 0.0000 0.05 0.24 64.53 61.25 32.26 69.54 0.38 43.8 0.04 0.19

ftv90 91 0.0000 0.0000 0.00 0.0060 0.0000 0.17 0.30 0.28 0.05 0.15

kro124p 100 0.0000 0.5951 0.00 1.64 0.35 0.00 0.01 0.00 0.0010 0.0000 1.26 1.52 33.25 54.21 20.86 78.52 0.74 28.9 0.08 0.33

p43 43 0.0000 0.0071 0.00 0.08 0.13 0.00 0.01 0.00 0.0010 0.0000 0.03 0.07 8.35 9.38 5.47 7.53 0.35 4.2 0.02 0.1

rbg323 323 0.0000 0.0452 0.00 1.30 0.06 0.13 0.00 0.00 0.0000 0.0000 7.60 12.73 0.01 96.75 87.12 103.28 0.07 110.4 0.96 4.25

rbg358 358 0.0000 0.0344 0.00 0.75 0.00 0.35 0.00 0.00 0.0000 0.0000 9.78 23.42 0.01 75.37 69.65 96.49 0.08 58.4 1.32 5.63

rbg403 403 0.0000 0.0000 0.00 1.35 0.00 0.31 0.00 0.00 0.0000 0.0000 2.93 10.60 0.01 104.39 85.32 147.83 0.08 33.1 1.61 6.63

rbg443 443 0.0000 0.0294 0.00 1.73 0.00 0.00 0.00 0.00 0.0000 0.0000 0.90 4.44 0.01 90.65 76.14 143.76 0.09 144.2 1.7 6.74

ry48p 48 0.0000 0.6130 0.00 0.00 0.00 0.00 0.03 0.00 0.0000 0.0000 0.27 0.14 7.83 7.97 5.45 12.35 0.32 53.4 0.02 0.07

Average 16 Instances 0.0000 0.2737 0.01 0.99 0.10 0.13 0.01 0.00 0.0007 0.0000 1.72 3.67 18.02 45.45 35.77 60.59 0.41 62.76 0.38 1.58

Average 18 Instances 0.0000 0.3127 0.00 0.82 0.09 0.11 0.04 — 0.0123 0.0021 1.53 3.27 16.36 39.71 30.96 55.83 0.40 — 0.34 1.41

Average 27 Instances 0.0000 0.3690 — — — — 0.04 — 0.0105 0.0014 1.56 2.67 — — — — 0.66 — 0.26 1.07

Optimal 16 Instances 16 3 13 5 10 10 10 13 11 16

Optimal 18 Instances 18 2 16 8 13 13 10 — 12 17

Optimal 27 Instances 27 4 — — — — 13 — 13 26

Table 2: Comparative analysis with metaheuristic algorithms.

 19

We begin by addressing the MM-ACO, MIMM-ACO, EO and CGAS algorithms as they are

all tested on the same instances and computer system. Among these, MIMM-ACO seems

to be the best performing algorithm finding the lowest average deviation from optimal and

the largest number of optimal solutions while using the smallest computation time.

Establishing direct comparisons with the remaining algorithms is not clear cut since the

former are tested on a smaller set of instances. For example, the average deviation from

optimal of MM-ACO can exceed 5% for some instances as in the case of ftv70. Even

though the testbed used by HGA differs in a few instances and the results for this latter

algorithm are averages over 100 runs as opposed to 25 runs used by the former

algorithms, the performance of HGA appears to be on a par with that of MIMM-ACO. On

the other hand, MA and GA are substantially faster in achieving solutions of similar

quality to those found by the best performing of these algorithms, with GA obtaining lower

percentage excess over optimal and a greater number of optimal solutions when the

population size is increased from 100 to 300. However, considering that the GA algorithm

runs on a more powerful computer than MA it is also apparent that GA with a population

of 300 solutions has higher running times than MA.

In order to appropriately compare the potential advantage of the metaheuristic

approaches analyzed here relative to the local search methods examined in the previous

section, a number of preliminary remarks should be made. As it can be seen from Tables

1 and 2, the computational studies on local search algorithms for the ATSP involve

instances of size slightly over 1000 cities while those on the metaheuristic algorithms only

report results for a subset of these instances containing less than 450 cities. An

interesting observation that can be derived from the results in Table 1 is that the

instances overlooked by the metaheuristic algorithms comprise those where iKP had more

trouble in finding its best solutions, which seems to suggest that those instances are

particularly challenging. Within the range of the problem sizes tested by the metaheuristic

algorithms those instances include dc126, dc176, and td316.10, on which iKP required

over 25 minutes, as opposed to less than 3 minutes on average required by this method to

find a 0.57% optimality gap on the instances in Table 2. A similar analysis on the

instances larger than 500 cities (also omitted in the present tests) shows that these

instances impose a significant computational burden on the algorithms tested in Table 1.

Specifically, for these larger instances the DR, iKP, and H-LK algorithms required on

average around 20 minutes, 1 hour, and 4 hours respectively, to find solutions that

deviate from optimality by less than 1% on average. By developing sophisticated search

strategies such as those underscored by the metaheuristics analyzed here one would aim

to challenge state-of-the-art local search approaches in solving larger and more difficult

20

ATSP instances. Therefore, the absence of results for these more ambitious algorithm

designs on the complete testbed of Table 1 somewhat limits the scope of our

computational analysis. However, it is clear that our DR local search algorithm competes

favorably with these advanced metaheuristic algorithms. Although not shown in our table,

the MA [3] and GA [26] original references report high success rates in finding optimal

solutions in the respective 20 runs and 100 runs performed by these algorithms on each

test instance. By contrast, our DR algorithm succeeds in finding the optimal solution for

all test instances while executing only 5 runs. Taking into account the differences

between processors, GA and DR exhibit similar running times while MA appears to be

slightly faster. MIMM-ACO, MM-ACO, EO, CGAS, and HGA show high variability of

running times across problems and are relatively slower algorithms, though still

displaying high levels of effectiveness on their reduced testbed.

4. Conclusion

We report a comparative study of two major neighborhood structures for the ATSP, the KP

specialized variant of the LK procedure suggested by Kanellakis and Papadimitriou [22],

and the DR ejection chain method proposed in Glover [13]. For a meaningful analysis, we

report results for a doubly-rooted ejection chain algorithm that follows the basic design

described in [13] and establish comparisons with the implementations reported in

Cirasella et al. [6]. Given the considerable advances in local search algorithms for the

STSP relative to those available for the ATSP and the fact that any ATSP can be

transformed into an equivalent STSP, attempts have been made to solve ATSPs using

algorithms originally designed for the STSP. In order to include this type of solution

approach in our analysis, we also compared our DR local search algorithm with the

currently most effective LK variant for the STSP due to Helsgaun [16], which for the sake

of achieving higher performance in solving ATSP instances has been further enhanced

with an adaptive iterated procedure.

Computational testing carried out on a standard ATSP test bank demonstrates that our

DR method significantly outperforms the enhanced LK extension, establishing the merit of

our contribution relative to both the original KP publication and the currently most

advanced extension of this work for the ATSP. Not only does the DR approach dominate

the local search instance of the LK method with respect to solution quality, but it

generates solutions whose quality matches that obtained by the advanced Iterated LK

procedures, while requiring significantly less computation time. Moreover, when

comparisons are made with respect to solutions found by the best run on each instance

21

as opposed to the average of those runs, our DR algorithm finds optimal solutions in a

fraction of the time required by other algorithms to find solutions that are often of inferior

quality.

It is appropriate to emphasize that our DR method allows for a relatively straightforward

algorithmic implementation. This contrasts with recent studies of other algorithms, which

rely heavily on metaheuristic search guidance to achieve higher performance on this more

difficult asymmetric variant of the TSP. However, a comparative analysis with the latest

and most advanced of these methods, embodying genetic algorithms, ant colony

optimization and hybrids of these methods with local search, shows that our DR local

search algorithm is highly effective compared with the best of these methods. While

executing no more than five runs on each instance our DR algorithm finds all optimal

solutions in less than two seconds on average.

The promising performance of our doubly-rooted ejection chain method in solving hard

ATSP instances suggests the merit of introducing more advanced metaheuristic guidance

into our approach. For example, the recent findings that population-based methods do a

good job of identifying arcs belonging to optimal solutions invite consideration of

embedding our algorithm within a population-based framework. As originally suggested in

Rego and Glover [31], approaches using adaptive memory constructs such as featured in

scatter search and path relinking (e.g., [33, 38, 40]) appear particularly worth exploring in

this regard.

Acknowledgements

This work was partially supported by FEDER Funds through the “Programa Operacional

Factores de Competitividade - COMPETE” program and by National Funds through FCT

“Fundação para a Ciência e a Tecnologia” under the project: PTDC/EGE-

GES/121660/2010.

22

References

[1] J. Bai, G.-K. Yang, Y.-W. Chen, L.-S. Hu, and C.-C. Pan, A Model Induced Max-Min Ant Colony
Optimization for Asymmetric Traveling Salesman Problem, Applied Soft Computing 13 (2013), 1365-
1375.

[2] O. Bräysy, E. Martínez, Y. Nagata, and D. Soler, The Mixed Capacitated General Routing Problem with
Turn Penalties, Expert Systems with Applications 30 (2011), 12954-12966.

[3] L. Buriol, P.M. França, and P. Moscato, A New Memetic Algorithm for the Asymmetric Traveling
Salesman Problem, Journal of Heuristics 10 (2004), 483-506.

[4] Y.-W. Chen, Y.-J. Zhu, G.-K. Yang, and Y.-Z. Lu, Improved Extremal Optimization for the
Asymmetric Traveling Salesman Problem, Physica A: Statistical Mechanics and its Applications 390
(2011), 4459-4465.

[5] F.F. Choobineh, E. Mohebbi, and H. Khoo, A Multi-objective Tabu Search for a Single-Machine
Scheduling Problem with Sequence-dependent Setup Times, European Journal of Operational Research
175 (2006), 318-337.

[6] J. Cirasella, D.S. Johnson, L.A. McGeoch, and W. Zhang, The Asymmetric Traveling Salesman Problem:
Algorithms, Instance Generators and Tests, Proc Algorithm Engineering and Experimentation Third
International Workshop, ALENEX 2001, Lecture Notes in Computer Science, Vol. 2153, Springer,
2001, pp. 32-59.

[7] G. Dong, W.W. Guo, and K. Tickle, Solving the Traveling Salesman Problem using Cooperative Genetic
Ant Systems, Expert Systems with Applications 39 (2012), 5006-5011.

[8] B. Funke, T. Grünert, and S. Irnich, A Note on Single Alternating Cycle Neighborhoods for the TSP,
Journal of Heuristics 11 (2005), 135-146.

[9] D. Gamboa, C. Rego, and F. Glover, Data Structures and Ejection Chains for Solving Large-Scale
Traveling Salesman Problems, European Journal of Operational Research 160 (2005), 154-171.

[10] D. Gamboa, C. Rego, and F. Glover, Implementation Analysis of Efficient Heuristic Algorithms for the
Traveling Salesman Problem, Computers & Operations Research 33 (2006), 1154-1172.

[11] M. Gendreau, J. Nossack, and E. Pesch, Mathematical Formulations for a 1-Full-Truckload Pickup-and-
Delivery Problem, European Journal of Operational Research 242 (2015), 1008-1016.

[12] F. Glover, "New Ejection Chain and Alternating Path Methods for Traveling Salesman Problems,"
Computer Science and Operations Research: New Developments in Their Interfaces, O. Balci, R. Sharda
and S.A. Zenios (Editors), Pergamon, Oxford, 1992, pp. 449-509.

[13] F. Glover, Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman
Problems, Discrete Applied Mathematics 65 (1996), 223-253.

[14] F. Glover, Finding a Best Traveling Salesman 4-Opt Move in the Same Time as a Best 2-Opt Move,
Journal of Heuristics 2 (1996), 169-179.

[15] G. Gutin and A. Yeo, Upper Bounds on ATSP Neighborhood Size, Discrete Applied Mathematics 129
(2003), 533-538.

[16] K. Helsgaun, An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic,
European Journal of Operational Research 126 (2000), 106-130.

[17] D.S. Johnson, Notes on Finding Best 2-Bridge Move, Notes Provided to the Authors, 2000.
[18] D.S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovitch, "Experimental Analysis

of Heuristics for the ATSP," The Traveling Salesman Problem and Its Variations, G. Gutin and A.
Punnen (Editors), Kluwer, Boston, 2002, pp. 445-487.

[19] D.S. Johnson and L.A. McGeoch, "Experimental Analysis of Heuristics for the STSP," The Traveling
Salesman Problem and Its Variations, G. Gutin and A. Punnen (Editors), Kluwer, Boston, 2002, pp.
369-443.

[20] D.S. Johnson, L.A. McGeoch, F. Glover, and C. Rego, 8th DIMACS Implementation Challenge: The
Traveling Salesman Problem, 2000, webpage. http://dimacs.rutgers.edu/Challenges/TSP.

[21] H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos, Container Movement by Trucks in Metropolitan
Networks: Modeling and Optimization, Transportation Research Part E: Logistics and Transportation
Review 41 (2005), 235-259.

[22] P.C. Kanellakis and C.H. Papadimitriou, Local Search for the Asymmetric Traveling Salesman Problem,
Operations Research 28 (1980), 1086–1099.

[23] G. Laporte, Modeling and Solving Several Classes of Arc Routing Problems as Traveling Salesman
Problems, Computers & Operations Research 24 (1997), 1057-1061.

23

[24] G. Laporte, A Concise Guide to the Traveling Salesman Problem, Journal of the Operational Research
Society 61 (2010), 35-40.

[25] S. Lin and B. Kernighan, An Effective Heuristic Algorithm for the Traveling Salesman Problem,
Operations Research 21 (1973), 498-516.

[26] Y. Nagata and D. Soler, A New Genetic Algorithm for the Asymmetric Traveling Salesman Problem,
Expert Systems with Applications 39 (2012), 8947-8953.

[27] E. Pesch and F. Glover, TSP Ejection Chains, Discrete Applied Mathematics 76 (1997), 165-181.
[28] A. Punnen and S. Kabadi, Domination Analysis of Some Heuristics for the Asymmetric Traveling

Salesman Problem, Discrete Applied Mathematics 119 (2002), 117-128.
[29] C. Rego, Relaxed Tours and Path Ejections for the Traveling Salesman Problem, European Journal of

Operational Research 106 (1998), 522-538.
[30] C. Rego, D. Gamboa, F. Glover, and C. Osterman, Traveling Salesman Problem Heuristics: Leading

Methods, Implementations and Latest Advances, European Journal of Operational Research 211 (2011),
427-441.

[31] C. Rego and F. Glover, "Local Search and Metaheuristics," The Traveling Salesman Problem and Its
Variations, G. Gutin and A. Punnen (Editors), Kluwer, Boston, 2002, pp. 309-368.

[32] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library, ORSA Journal on Computing 3 (1991),
376-384.

[33] M.G.C. Resende, C.C. Ribeiro, F. Glover, and R. Martí, "Scatter Search and Path Relinking:
Fundamentals, Advances and Applications," Handbook of Metaheuristics: International Series in
Operations Research & Management Science, M. Gendreau and J.-Y. Potvin (Editors), Springer, New
York, 2010, Vol. 146, Chapter 4, pp. 87-107.

[34] R. Roberti and P. Toth, Models and Algorithms for the Asymmetric Traveling Salesman Problem,
EURO Journal on Transportation and Logistics 1 (2012), 113–133.

[35] A. Rodríguez and R. Ruíz, The Effect of the Asymmetry of Road Transportation Networks on the
Traveling Salesman Problem, Computers and Operations Research 39 (2012), 1566-1576.

[36] D. Soler, E. Martínez, and J.C. Micó, A Transformation for the Mixed General Routing Problem with
Turn Penalties, Journal of the Operational Research Society 59 (2008), 540-547.

[37] T. Stützle and H.H. Hoos, MAX-MIN Ant System, Future Generation Computer Systems 16 (2000),
889-914.

[38] Y. Wang, Z. Lu, F. Glover, and J.-K. Hao, Path Relinking for Unconstrained Binary Quadratic
Programming, European Journal of Operational Research 223 (2012), 595-604.

[39] L.N. Xing, Y.W. Chen, K.W. Yang, F. Hou, X.S. Shen, and H.P. Cai, A Hybrid Approach Combining an
Improved Genetic Algorithm and Optimization Strategies for the Asymmetric Traveling Salesman
Problem, Engineering Applications of Artificial Intelligence 21 (2008), 1370-1380.

[40] M. Yagiura, T. Ibaraki, and F. Glover, A Path Relinking Approach with Ejection Chains for the
Generalized Assignment Problem, European Journal of Operational Research 169 (2006), 548-569.

