
Computers & Operations Research 39 (2012) 3–11
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m

gary.koc

glover@
journal homepage: www.elsevier.com/locate/caor
A computational study on the quadratic knapsack problem with
multiple constraints
Haibo Wang a,�, Gary Kochenberger b, Fred Glover c

a Sanchez School of Business, Texas A&M International University, Laredo, TX 78041, USA
b School of Business Administration, University of Colorado at Denver, Denver, CO 80217, USA
c OptTek Systems, Boulder, CO 80302, USA
a r t i c l e i n f o

Available online 11 January 2011

Keywords:

0-1 quadratic programming

Knapsack problem

Mixed integer quadratic program

Branch-and-cut

Linearization
48/$ - see front matter Published by Elsevier

016/j.cor.2010.12.017

esponding author. Tel.: +1 956 326 2503; fax

ail addresses: hwang@tamiu.edu (H. Wang),

henberger@ucdenver.edu (G. Kochenberger),

opttek.com (F. Glover).
a b s t r a c t

The quadratic knapsack problem (QKP) has been the subject of considerable research in recent years.

Despite notable advances in special purpose solution methodologies for QKP, this problem class

remains very difficult to solve. With the exception of special cases, the state-of-the-art is limited to

addressing problems of a few hundred variables and a single knapsack constraint.

In this paper we provide a comparison of quadratic and linear representations of QKP based on test

problems with multiple knapsack constraints and up to eight hundred variables. For the linear

representations, three standard linearizations are investigated. Both the quadratic and linear models

are solved by standard branch-and-cut optimizers available via CPLEX. Our results show that the linear

models perform well on small problem instances but for larger problems the quadratic model

outperforms the linear models tested both in terms of solution quality and solution time by a wide

margin. Moreover, our results demonstrate that QKP instances larger than those previously addressed

in the literature as well as instances with multiple constraints can be successfully and efficiently solved

by branch and cut methodologies.

Published by Elsevier Ltd.
1. Introduction

Quadratic knapsack problem arises from knapsack problem
with all binary variables, positive coefficients in constraint(s) and
nonnegative coefficients in objective function to maximize a non-
linear objective function subject to knapsack constraint(s). Much of
the literature on the quadratic knapsack problem concerns the
construction and testing of special purpose methods for solving
QKP problems with single knapsack constraint. While a few articles
have proposed heuristic methods to be applied directly to QKP (see
for instance Refs. [1,2]), most approaches described in the litera-
ture employ linearizations of one kind or another designed to
convert QKP into an equivalent mixed integer linear program. In
turn, this enables QKP to be solved by well-known approaches for
optimizing MIPs. Illustrative of such approaches are the special
purpose branch-and-bound methods proposed in Refs. [3–6]. In
addition, other well-known methods proposed on general 0-1
programming, which can be applied to 0-1 QKP, include semi-
definite programming [7,8], strong convex quadratics program-
ming relaxation [9] and reformulation-linearization technique [10].
Ltd.

: +1 956 326 2494.
An overview of these and other methods is given in the recent
survey paper by Pisinger [11] on quadratic knapsack problems but
not with general 0-1 QKP. While advances in solution methodology
have been reported in the literature, this class of problems remains
very difficult to solve and the best known solution methods for
QKP are limited in application to problems with a few hundred
variables and a single knapsack constraint. Pre-processing and
reduction techniques, such as those proposed by Pisinger et al.
[12], enable larger instances to be solved in certain cases.

Rather than considering special purpose methods, we restrict
our attention here to the general purpose optimizers for mixed
integer linear programming (MILP) and mixed integer quadratic
programming (MIQP) that come standard as part of CPLEX. No
specialization is undertaken for the class of problems considered
here. We use these optimizers to compare the performance of
three substantially different formulations for QKP on a new test
bed of challenging problems.

This paper extends the literature in several important ways.
1.
 This is the first paper in the literature to compare the
performance of two well-known linearizations and one
recently published linearization with the original quadratic
formulation for finding optimal solutions to QKP problems.
2.
 This is the first paper in the literature to address general QKP
instances with multiple knapsack constraints.
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3.
 We present extensive computational experience reporting our
success in solving problems considerably larger and more
complex than previously addressed in the literature.
4.
 We highlight the effectiveness of a quadratic programming based
branch and cut approach for solving large instances of QKP.
5.
 Finally, we introduce a new set of challenging test problems to
the research community.

The rest of this paper is organized as follows. In the next
section we present the formulations considered in this research.
Then in Section 3 we present our computational experience
followed by our summary and conclusions in Section 4.
2. Formulations tested

In this section we present the four models tested and com-
pared in this paper. The first is QKP in its original form. The
second and third models are based on popular, common linear-
izations of QKP. The fourth model is based on recently published
paper [13]. These four models are presented here and tested in
Section 3. We note that while several linearizations have
appeared in the literature, the three employed here are repre-
sentative of the ‘‘linear’’ approach to QKP. Moreover, they can be
implemented straight-away without the pre-processing or other
special attention required of certain other linearizations.

2.1. Original quadratic model

The standard statement of the quadratic knapsack problem is

QP : max f ðxÞ ¼
Xn

j ¼ 1

cjxjþ
Xn�1

i ¼ 1

Xn

j ¼ iþ1

cijxixj ð1Þ

st

Xn

j ¼ 1

aijxjrbi i¼ 1,m ð2Þ

xAf0,1gn ð3Þ

For the computational work carried out and reported in this
paper, we assume cj, cij, aij, and biZ0. This formulation, which
we will refer to as QP, will be compared with the following three
linearizations.

In the computations carried out, we solved QP using CPLEX’s
MIQP solver. In general, this routine is designed to solve linearly
constrained quadratic binary problems with objective functions of
the form

min x0 ¼ cxþxuQx ð4Þ

where Q is a positive semi-definite (PSD) matrix. This PSD
requirement can always be satisfied for the class of problems
considered here by modifying c and Q using standard diagonal
perturbation techniques (see, for instance, Refs. [14,15]). For the
testing reported in this paper, we transformed each problem
using the minimum eigenvalue transformation to ensure that the
required convexity conditions were satisfied for each problem
before applying MIQP.

2.2. First linearization

The first linearization we consider is a classic in the literature
(see Refs. [3,6,16]) where each quadratic term in the objective
function, xixj, is replaced by a new binary variable, wij, and the
new constraints

wijrxi, wijrxj, and xiþxjr1þwij ð5Þ
are added to the model to require that wij¼1 if and only if xi¼1
and xj¼1. For the QKP problems considered here, the last of the
three constraints in Eq. (5) is not necessary and we have the
linearization

LIN1 : max f ðxÞ ¼
Xn

i ¼ 1

cixiþ
Xn�1

i ¼ 1

Xn

j ¼ iþ1

cijwij ð6Þ

st

Xn

j ¼ 1

aijxjrbii¼ 1,m ð7Þ

wijrxi i¼ 1, . . . ,n�1, j¼ iþ1, . . . ,n ð8Þ

wijrxj i¼ 1, . . . ,n�1, j¼ iþ1, . . . ,n ð9Þ

xj,wij binary ð10Þ

In the testing that follows, we refer to this model as LIN1. Note
that this formulation grows rapidly in size with both n and
problem density. Nonetheless Ref. [6] report that this simple
formulation compares quite well with several other linearizations
and that it is particularly well suited for low-density problems
where it outperformed the alternative linearizations they tested.

2.3. Second linearization

For our second linearization we take a substantially different
approach than that of Section 2.2 above. Here, we adopt an
alternative linearization approach based on Ref. [17] (see also
Refs. [11,18,19]). This development starts by noting that f(x), from
Eq. (1), can be written as

f ðxÞ ¼
Xn

j ¼ 1

xjgjðxÞ ð11Þ

where

gjðxÞ ¼ cjþ
Xn

i ¼ jþ1

cjixi j¼ 1 . . . ðn�1Þ ð12Þ

and for j¼n we have

gnðxÞ ¼ cn

Let

zj ¼ xjgjðxÞ ð13Þ

and define

Uj ¼ upper bound on gjðxÞ

Lj ¼ lower bound on gjðxÞ

Given this, a linearization of QKP (see Ref. [17]) is

Max
Xn

j ¼ 1

zj ð14Þ

st

Xn

j ¼ 1

aijxjrbi i¼ 1,m ð15Þ

LjxjrzjrUjxj ð16Þ

gjðxÞ�Ujð1�xjÞrzjrgjðxÞ�Ljð1�xjÞ ð17Þ

x binary ð18Þ

An observation of Glover [20] permits this linearization to be
accomplished with fewer constraints, but within the present
context we observe that it can be conveniently simplified to
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produce the following streamlined formulation:

LIN2 : Max
Xn

j ¼ 1

zj ð19Þ

st

Xn

j ¼ 1

aijxjrbi i¼ 1,m ð20Þ

zjrUjxj ð21Þ

zjrgjðxÞ ð22Þ

x binary, zjZ0: ð23Þ

Proposition. LIN2 is equivalent to the formulation (14)–(18).

Proof. It suffices to establish that Eqs. (16), (17) and (18) can be
replaced by Eqs. (21), (22) and (23). The replacement of Eq. (16)
by Eq. (21) is immediate by observing that we may legitimately
take Lj¼0, and by incorporating the resulting lower bound on zj in
Eq. (23) as a standard non-negativity restriction, This also justifies
replacing gjðxÞ�Ljð1�xjÞ in Eq. (17) with gjðxÞ to give Eq. (22). It
remains to show that nothing is lost by dropping the term
gjðxÞ�Ujð1�xjÞ that bounds zj from below in Eq. (17) to yield
Eq. (22), even though this term may well be more restrictive than
the non-negativity bound on zj. Specifically, due to the form of the
objective function (14) (¼(19)) and the fact that zj only appears in
the constraints (16) and (17) in the original formulation, we are
assured that the optimum value of zj will be given by
zj ¼MinðUjxj,gjðxÞÞ. If zj ¼ gjðxÞ, then clearly the lower bound on
zj in Eq. (17) is redundant. On the other hand, if zj ¼Ujxj, we must
show that UjxjZgjðxÞ�Ujð1�xjÞ. The outcome is established by
observing that in both of the two cases xj ¼ 0 and xj ¼ 1, this latter
inequality reduces to UjZgjðxÞ. &

Note that the Uj values can be taken to be the sum of all the
coefficients in gjðxÞ in Eq. (12). Relative to LIN1, LIN2 is a very
compact linearization involving just n new (continuous) variables
and 2n new constraints. Our preliminary computational experi-
ence with this model, confirmed by the additional work reported
below, suggests that LIN2 is quite effective compared to LIN1 for
class of QKP instances considered in this paper.
2.4. Third linearization

After the completion of the initial study with LIN1 and LIN2,
we learned about a new linearization proposed by Hansen and
Meyer [13]. To evaluate the performance of this recently pub-
lished linearization, we include this linearization in our study and
refer this model as LIN3. The quadratic objective function can be
rewritten as follows:

f ðxÞ ¼ gð0ÞðxÞþ
Xn

j ¼ 1

ðxjg
ð1Þ
j ðxÞþð1�xjÞg

ð2Þ
j ðxÞÞ ð24Þ

where gð0ÞðxÞ,gð1Þi ðxÞ,g
ð2Þ
i ðxÞ are linear functions which can be

derived from a posiform of the quadratic objective function. In
the case of QKP, gð0ÞðxÞ is equal to a constant. The complete details
of this new linearization approach are given in Ref. [13]. Let
fjðxÞ ¼ gð1Þj ðxÞ�gð2Þj ðxÞ and defineUj ¼ upper bound on fjðxÞ and
Lj ¼ lower bound on fjðxÞ

LIN3 : Max
Xn

j ¼ 1

zj ð25Þ
st

Xn

j ¼ 1

aijxjrbi i¼ 1,m ð26Þ

zjZgð1Þj ðxÞ�ð1�xiÞUj, j¼ 1,n ð27Þ

zjZgð2Þj ðxÞþxjLj, j¼ 1,n ð28Þ

x binary, zjZ0:
3. Computational experience

To test and compare the four models, we generated a new set
of test problems ranging in size from 10 to 800 variables and from
3 to 15 knapsack constraints. These test problems were generated
following procedure proposed by Gallo et al. [21]. Specifically, the
aij coefficients are randomly generated with uniformly distributed
in [1,50], the cj are randomly generated in the range [1.100], and
the cij values (cij¼cji) are zero with probability equal to the
problem density and otherwise randomly generated with uni-
formly distributed in the range [1,100]. Finally, the right-hand
side values, bi for each of the knapsack constraints are randomly
generated with uniformly distributed in the range [50,

Pn
j ¼ 1 aij].

This approach to generating QKP test problems is widely accepted
in the literature.

The test bed considered here consists of three sets of pro-
blems: 24 small instances ranging in size from 10 to 100 variables
and 3 to 6 knapsack constraints; 24 medium-sized instances
ranging in size from 200 to 500 variables and 2 to 10 knapsack
constraints; and, 8 large instances of size 800 variables with 5, 10,
and 15 knapsack constraints. For all three size categories, den-
sities range from 25% to 75%. This set of test problems contains
larger instances than other test beds appearing in the literature
and is the first to include problems with multiple knapsack
constraints. As shown in the solution tables to follow, these
problems, particularly the larger instances, proved to be very
challenging for CPLEX and all four formulations tested. An addi-
tional discussion of problem difficulty is given in the appendix of
this paper.

Tables 1–3 give the problem characteristics. Column 1 denotes
the problem ID. Column 2 denotes the value of n and column
3 denotes the value of m, which the number of constraints in the
original quadratic programming model. Column 4 denotes the
problem density, which represents the percentage of nonzero
coefficients of the quadratic terms. Columns 5, 7 and 9 denote the
number of variables associated with each model and Columns 6,
8 and 10 denote the number of constraints associated with each
model. All problems are available at www.tamiu.edu/�hwang/
research/qkp/.

Each of the four model formulations was applied to this
problem test bed. For the three linear formulations, LIN1, LIN2
and LIN3, the problems were solved using CPLEX’s branch-and-
cut optimizer (MILP, version 10.2) designed for linear mixed
integer problems. Parameter values for CPLEX were set as follows:
rinsheur in a range of 1–40, and heuristicfreq in a range of 5–40.
For the quadratic formulation (QP), the problems were solved
using CPLEX’s branch-and-cut optimizer (MIQP, version 10.2)
designed for quadratic mixed integer problems. The same set of
parameters was used for both the linear and the quadratic
optimizer. The key difference is that the model QP is solved via
quadratic relaxations while the three linear models are solved
utilizing LP relaxations. All runs are carried out by a 1.3 GHz
Pentium IV PC.

www.tamiu.edu/~hwang/research/qkp/
www.tamiu.edu/~hwang/research/qkp/
www.tamiu.edu/~hwang/research/qkp/
www.tamiu.edu/~hwang/research/qkp/
www.tamiu.edu/~hwang/research/qkp/
www.tamiu.edu/~hwang/research/qkp/


Table 1
Description of small quadratic knapsack problems.

ID n m Density LIN1 LIN2 LIN3 QP

# vars #cons #vars #cons #vars #cons #vars #cons

sqkp1 10 3 25% 22 27 20 23 20 23 10 3

sqkp2 50% 37 57 20 23 20 23 10 3

sqkp3 75% 44 71 20 23 20 23 10 3

sqkp4 6 25% 24 34 20 26 20 26 10 6

sqkp5 50% 34 54 20 26 20 26 10 6

sqkp6 75% 46 78 20 26 20 26 10 6

sqkp7 20 3 25% 87 137 40 43 40 43 20 3

sqkp8 50% 118 199 40 43 40 43 20 3

sqkp9 75% 165 293 40 43 40 43 20 3

sqkp10 6 25% 71 108 40 46 40 46 20 6

sqkp11 50% 109 184 40 46 40 46 20 6

sqkp12 75% 166 298 40 46 40 46 20 6

sqkp13 50 3 25% 376 655 100 103 100 103 50 3

sqkp14 50% 645 1193 100 103 100 103 50 3

sqkp15 75% 977 1857 100 103 100 103 50 3

sqkp16 6 25% 348 602 100 106 100 106 50 6

sqkp17 50% 658 1222 100 106 100 106 50 6

sqkp18 75% 984 1874 100 106 100 106 50 6

sqkp19 100 3 25% 1305 2413 200 203 200 203 100 3

sqkp20 50% 2597 4997 200 203 200 203 100 3

sqkp21 75% 3790 7383 200 203 200 203 100 3

sqkp22 6 25% 1303 2412 200 206 200 206 100 6

sqkp23 50% 2580 4966 200 206 200 206 100 6

sqkp24 75% 3841 7488 200 206 200 206 100 6

Table 2
Description of medium-sized quadratic knapsack problems.

ID n m Density LIN1 LIN2 LIN3 QP

# vars # cons # vars # cons # vars # cons # vars # cons

mqkp1 200 2 25% 5200 10,046 400 402 400 402 200 2

mqkp2 50% 9995 19,824 400 402 400 402 200 2

mqkp3 75% 14,990 30,080 400 402 400 402 200 2

mqkp4 4 25% 5108 9884 400 404 400 404 200 4

mqkp5 50% 10,040 19,926 400 404 400 404 200 4

mqkp6 75% 14,881 29,838 400 404 400 404 200 4

mqkp7 300 3 25% 11,359 22,235 600 603 600 603 300 3

mqkp8 50% 22,311 44,421 600 603 600 603 300 3

mqkp9 75% 33,428 67,183 600 603 600 603 300 3

mqkp10 6 25% 11,474 22,444 600 606 600 606 300 6

mqkp11 50% 22,482 44,828 600 606 600 606 300 6

mqkp12 75% 33,549 67,478 600 606 600 606 300 6

mqkp13 400 4 25% 20,391 40,136 800 804 800 804 400 4

mqkp14 50% 39,745 79,310 800 804 800 804 400 4

mqkp15 75% 59,438 119,552 800 804 800 804 400 4

mqkp16 8 25% 20,134 39,606 800 808 800 808 400 8

mqkp17 50% 39,854 79,578 800 808 800 808 400 8

mqkp18 75% 59,475 119,590 800 808 800 808 400 8

mqkp19 500 5 25% 31,413 62,039 1000 1005 1000 1005 500 5

mqkp20 50% 62,188 124,259 1000 1005 1000 1005 500 5

mqkp21 75% 92,991 186,933 1000 1005 1000 1005 500 5

mqkp22 10 25% 31,441 62,090 1000 1010 1000 1010 500 10

mqkp23 50% 62,358 124,564 1000 1010 1000 1010 500 10

mqkp24 75% 93,209 187,354 1000 1010 1000 1010 500 10
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3.1. Results for small problems

Table 4 presents the solution times and optimal objective
function values for the small problems described in Table 1. All
four models quickly produced optimal solutions for each of the 24
problems. The times shown in the table are the total time for the
branch and cut procedure to terminate naturally with a proven
optimal solution. The smallest solution time for each problem is
highlighted in bold.

Within this small problem category, LIN1 has a slight edge for
the n¼10 and n¼20 variable problems in terms of solution times
but there is little difference here in the performance of all four
models. (For the n¼20 problems, the time performance of LIN1 is
closely followed by that of LIN3, LIN2 and QP in this order.) Over



Table 3
Description of large quadratic knapsack problems.

ID n m Density LIN1 LIN2 LIN3 QP

#vars #cons #vars #cons #vars #cons #vars #cons

lqkp1 800 5 25% 80,652 160,079 1600 1605 1600 1605 800 5

lqkp2 50% 160,192 320,243 1600 1605 1600 1605 800 5

lqkp3 75% 238,741 478,993 1600 1605 1600 1605 800 5

lqkp4 10 25% 80,352 159,476 1600 1610 1600 1610 800 10

lqkp5 50% 159,938 319,654 1600 1610 1600 1610 800 10

lqkp6 75% 238,571 478,744 1600 1610 1600 1610 800 10

lqkp7 15 25% 80,781 160,320 1600 1615 1600 1615 800 15

lqkp8 50% 159,765 319,359 1600 1615 1600 1615 800 15

lqkp9 75% 239,182 480,031 1600 1615 1600 1615 800 15

Table 4
Computation times and optimal solutions for the small problems.

ID LIN1 LIN2 LIN3 QP

Time (s) Solution Time (s) Solution Time (s) Solution Time (s) Solution

sqkp1 0.00 648 0.00 648 0.00 648 0.00 648

sqkp2 0.02 505 0.03 505 0.02 505 0.03 505

sqkp3 0.06 290 0.05 290 0.03 290 0.06 290

sqkp4 0.01 383 0.02 383 0.01 383 0.02 383

sqkp5 0.00 963 0.01 963 0.02 963 0.01 963

sqkp6 0.00 234 0.01 234 0.02 234 0.02 234

sqkp7 0.25 1919 0.57 1919 0.12 1919 0.74 1919

sqkp8 0.33 521 0.14 521 0.19 521 0.24 521

sqkp9 1.61 4274 0.58 4274 0.34 4274 1.02 4274

sqkp10 0.14 1011 0.42 1011 0.16 1011 0.46 1101

sqkp11 0.2 1762 0.31 1762 0.38 1762 0.65 1762

sqkp12 3.50 3186 4.62 3186 1.18 3186 2.93 3186

sqkp13 0.35 11,790 0.67 11,790 0.55 11,790 1.01 11,790

sqkp14 15.43 11,223 3.55 11,223 1.89 11,223 2.19 11,223

sqkp15 5.54 19,512 3.23 19,512 3.26 19,512 2.40 19,512

sqkp16 2.87 5573 1.84 5573 1.01 5573 1.93 5573

sqkp17 3.93 3658 2.39 3658 2.42 3658 2.99 3658

sqkp18 3.48 3408 2.65 3408 3.34 3408 2.57 3408

sqkp19 11.28 17,140 4.53 17,140 4.54 17,140 3.50 17,140

sqkp20 327.95 26,029 119.10 26,029 9.31 26,029 4.41 26,029

sqkp21 1454.75 15,267 21.25 15,267 17.78 15,267 3.41 15,267

sqkp22 1121.95 10,071 136.2 10,071 76.21 10,071 144.18 10,071

sqkp23 3470.62 30,403 452.77 30,403 175.34 30,403 117.86 30,403

sqkp24 39.92 3427 3.26 3427 18.32 3427 1.30 3427
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the six problem instances for n¼10 and n¼20, each of the three
linear models gave the smallest CPU time on at least one instance.
For the n¼50 problems, the relative performance of LIN1 and
LIN2 drops off with LIN3 and QP providing the best time
performance. Finally, for the n¼100 problems, QP generally
provides the best time performance followed by LIN3, LIN2 with
LIN1 coming in at a distant 4th place. In fact, for n¼100 the
solution times for QP are typically an order of magnitude smaller
than those of LIN1.

Table 5 presents the number of nodes to termination and the
value of the initial relaxation for each model for the 24 small
problems. LIN1 gave the strongest relaxation on all 24 of the
problems. LIN3 gave the weakest relaxation on 6 problems, while
LIN2 gave the weakest relaxation on 3 problems and QP produced
the weakest relaxation on 15 problems in this problem set. The
node counts given in Table 5 need to be interpreted with the
understanding that the branch and cut procedure used on all four
models employs CPLEX standard heuristic procedures intended to
enhance the relaxations found before any branching takes place.
For these small problems, this heuristic enhancement was very
productive for all four models. For example, on 18 of the 24
problems, optimal solutions were obtained via LIN1 without any
branching at all. Similar results were obtained for LIN2, LIN3 and,
to a lesser extent, for QP. As expected, the largest problems in this
set (i.e., the n¼100 problems) generally took the most branching
for all four models.

Tables 4 and 5 illustrate the somewhat confounding relation-
ship between strength of the relaxation, total CPU time and node
count as the efficiency of the tree search is influenced by not only
the strength of the initial bound but how expensive it is to
compute the bound as well as the impact of the heuristic
enhancement. As commented earlier, LIN1 had the strongest
relaxation for each of the 24 problems yet gave the best time
performance on only 7 of the smaller problems in this set. More-
over, on the 50 variable problem sqkp16, LIN3 had the weakest
relaxation yet turned in the best time performance on this
problem. Among three linear models, LIN3 requires more compu-
tation time when the density increases in this set, which is not
observed in LIN1 and LIN2. Generally, though, for the larger
problems in this set, the time advantage shifted to QP due to the
smaller size of the relaxations to be solved. This trend is even more
apparent for the medium and large problems of Tables 6 and 8.



Table 5
Total node count and initial relaxation for small problems.

ID LIN1 LIN2 LIN3 QP

# Nodes Relaxation # Nodes Relaxation # Nodes Relaxation # Nodes Relaxation

Sqkp1 0 672.7179 0 672.8684 0 683.4271 0 701.972

Sqkp2 0 604.9259 0 735.6531 0 725.3521 0 719.1087

Sqkp3 0 544.6291 0 678.9119 1 691.9716 0 607.913

Sqkp4 0 474.1621 2 478.7965 0 512.3386 0 532.9974

Sqkp5 0 969.4545 0 1008.165 1 1044.3126 0 1053.578

Sqkp6 0 407.7234 0 562.0818 2 584.2413 0 522.7983

Sqkp7 0 2130.142 0 2374.584 0 2357.07 0 2315.051

Sqkp8 0 843.6738 0 1160.06 1 1184.128 0 1117.33

Sqkp9 0 4561.95 0 4975.374 4 5035.286 4 5047.538

Sqkp10 0 1187.776 8 1487.334 3 1445.894 4 1395.088

Sqkp11 0 2041.573 0 2386.868 2 2401.236 0 2382.024

Sqkp12 0 3936.877 0 4365.794 0 4376.751 4 4348.526

Sqkp13 3 11862.92 0 12555.26 0 12597.35 0 12654.26

Sqkp14 0 11680.86 0 13533.13 1 13742.48 2 13978.25

Sqkp15 0 20205.62 0 22971.62 1 23274.25 2 23758.16

Sqkp16 0 5908.856 0 7022.584 2 7069.351 0 6931.953

Sqkp17 0 4350.807 0 6020.706 0 6421.793 4 6643.167

Sqkp18 0 4865.899 0 6889.734 3 7328.895 0 7754.318

Sqkp19 12 17309.21 0 20178.97 4 20436.76 0 20641.99

Sqkp20 32 30761.81 532 37466.65 683 38531.94 24 38988.69

Sqkp21 112 19748.36 114 27574.47 231 31742.89 8 32237.85

Sqkp22 374 12753.96 584 15579.49 712 15970.32 192 16088.91

Sqkp23 496 37415.03 1302 42827.29 1413 44817.46 356 45362.44

Sqkp24 0 4523.556 0 8254.965 2 9314.688 0 11975.47

Table 6
Computation times and best solutions found within a CPU time limit (7200 s) for the medium sized problems.

ID LIN1 LIN2 LIN3 QP

Time (s) Solution Time (s) Solution Time (s) Solution Time (s) Solution

mqkp1 7200 177,030 1096.22 177,272 367.21 177,272 24.10 177,272

mqkp2 7200 11,533 1193.03 11,648 144.57 11,648 4.57 11,648

mqkp3 7200 465,570 665.51 470,218 246.13 470,218 124.67 470,218

mqkp4 7200 11,281 87.01 11,777 37.12 11,777 49.67 11,777

mqkp5 7200 61,856 1705.6 67,621 644.37 67,621 77.21 67,621

mqkp6 7200 26,044 861.98 26,696 229.01 26,696 31.60 26,696

mqkp7 7200 53,060 59.13 53,653 26.38 53,653 104.86 53,653

mqkp8 7200 691,414 3491.23 696,397 1216.92 696,397 52.94 696,397

mqkp9 7200 36,123 362.43 91,006 189.25 91,006 340.26 91,006

mqkp10 7200 26,098 2750.46 27,876 1635.43 27,876 1074.06 27,876

mqkp11 7200 43,743 1505.51 47,227 879.23 47,227 1226.28 47,227

mqkp12 7200 81,635 143.57 84,838 51.77 84,838 4.86 84,838

mqkp13 7200 257,511 3816.36 259,319 3190.23 259,319 7200 259,307

mqkp14 7200 63,506 40.68 64,168 68.14 64,168 549.53 64,168

mqkp15 7200 224,701 7200 618,252 7200 618,412 2768.57 620,562

mqkp16 7200 6531 933.23 8322 225.34 8322 130.73 8322

mqkp17 7200 99,846 7200 134,003 7200 135,013 2973.91 135,675
mqkp18 7200 ** 7200 574,713 7200 579,931 4389.21 588,088
mqkp19 7200 55,697 7200 71,321 7200 72,004 6537.59 72,684
mqkp20 7200 3499 39.29 69,919 22.37 69,919 7.45 69,919

mqkp21 7200 343,995 7200 1,199,141 7200 1,199,084 5054.64 1,199,742
mqkp22 7200 77,887 7200 170,899 5731.2 170,939 2719.44 170,939
mqkp23 7200 ** 33.30 29,697 19.68 29,697 42.68 29,697

mqkp24 7200 102,226 7200 607,902 7200 605,328 3875.29 611,297
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3.2. Results for medium-sized problems

Table 6 reports the timing and solution value results for the
medium-sized problems described in Table 2. These problems,
ranging in size from 200 to 500 variables and 2 to 10 knapsack
constraints, were given a 7200 s (i.e., 2 h) time limit. The values
reported in the table are the best objective function values found
in the time limit allowed.

LIN1 was unable to solve any of the 24 problems in this
problem set within the allotted time. The LPs associated with
LIN1 are too time-consuming to enable natural termination
within 7200 s. In fact for two of the problems, the initial relaxa-
tion of LIN1 could not be solved in the time given. For all 24
problems, the best solutions found via LIN1 were inferior to those
coming from LIN2, LIN3 and QP.

In contrast to the performance of LIN1, the other three models
were relatively successful on these problems. As shown in Table 6,
LIN2 gave optimal solutions for 17 out of 24 problems while LIN3
produced optimal solution for 18 out of 24 problems and QP
reported optimal solutions for 23 out of the 24 problems. On the 16
problems where all three models gave the optimal solution, QP had
a smaller CPU time on 10 problems followed by LIN3 with 5 and



Table 8
Computational results for large problems: best solutions found within a CPU limit

of 14,400 s.

ID LIN2 LIN3 QP

Time (s) Solution Time (s) Solution Time (s) Solution

lqkp1 14,400 386,714 14,400 386,706 14,400 414,796
lqkp2 14,400 3,291,313 14,400 3,291,768 14,400 3,304,401
lqkp3 14,400 2,857,042 14,400 2,877,312 14,400 2,941,027
lqkp4 14,400 264,911 14,400 270,458 14,400 283,141
lqkp5 14,400 1,054,419 14,400 1,054,587 14,400 1,106,566
lqkp6 14,400 758,346 14,400 773,197 14,400 801,725
lqkp7 14,400 723,419 14,400 731,940 14,400 742,162
lqkp8 14,400 526,883 14,400 530,871 14,400 553,301
lqkp9 14,400 1,280,871 14,400 1,290,073 14,400 1,304,561

Table 9
Computational results for large problems: total # nodes, and initial relaxations

within a CPU Limit of 14,400 s.

ID LIN2 LIN3 QP

# Nodes Relaxation # Nodes Relaxation # Nodes Relaxation

lqkp1 305 745648.9 598 779145.6 723 838164.7

lqkp2 260 4015129.0 477 4033187.3 990 4207809.0

lqkp3 500 4070389.0 377 4116588.1 486 4371211.0

lqkp4 157 630446.2 514 683945.7 750 717126.6

lqkp5 536 1814310.0 378 1931456.1 646 2024964.0

lqkp6 155 1823784.0 363 1942358.8 544 2106518.0

lqkp7 1543 1101091.0 1026 1104275.0 618 1193577.0

lqkp8 225 1163669.0 433 1284391.3 1100 1380316.0

lqkp9 1999 1992258.0 1209 2128634.6 450 2321545.0
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LIN2 with 1 in this order. Generally, however, the CPU time to find
and prove optimality was considerable shorter for QP than for LIN2
and LIN3. On those problems where the three models terminated
naturally, QP reported the optimal solution in an average time of
255 s while LIN2 took an average of 995 s and LIN3 used an average
of 690.24 s. However, the impact of density on CPU time found in
small problem set with LIN3 was not observed in this set.

Table 7 presents the node counts at termination and the initial
relaxations for these problems. For these 24 problems, QP gave the
weakest initial relaxations. Yet, QP generally had lower nodes counts
and clearly delivered the best overall performance for these med-
ium-sized problems in terms of solution quality and solution time.

3.3. Results for large problems

Tables 8 and 9 present the computational results for the
n¼800 problems of Table 3. For these problems we restrict our
attention to the models LIN3, LIN2 and QP as the LPs associated
with LIN1 are too large to make it competitive. Table 8 lists the
best solution found for each problem within an allotted time of
14,400 s (4 h). Note that none of three models produced a proven
optimal solution within the time limit given but that QP domi-
nated LIN2 and LIN3 across the board in terms of solution quality.

In an effort to see how close the results of Table 8 are to
optimal solutions, we arbitrarily chose lqkp2 on model QP and
solved it again with the time limit removed. This produced an
optimal solution of 3,304,703 at a CPU time of 42,060 seconds
(more than 11 h). Thus the gap between the optimal solution and
the best solution found (objective function¼3,304,401) within
14,400 s is roughly .009%. The gaps for the other problems are not
known at this time but we suspect they are small as well.

3.4. Overall assessment

Based on the results given in the above tables, no conclusions
can be drawn about the impact of either density or the number of
Table 7
Total node count and initial relaxation for the medium sized problems

ID LIN1a LIN2

# Nodes Relaxation # Nodes Relaxation

mqkp1 37814 179409.2 918 189679.1

mqkp2 297 13563.04 4476 26308.0

mqkp3 571 484504.4 1114 513803.1

mqkp4 315 14283.55 174 23090.7

mqkp5 17 100738.7 581 113915.8

mqkp6 169 27938.32 0 47268.6

mqkp7 457 53299.39 170 76124.6

mqkp8 57 710377.7 3486 756355.7

mqkp9 1 110427.6 354 162576.2

mqkp10 45 38509.74 1265 58628.1

mqkp11 5 54772.74 1048 88549.9

mqkp12 146 82606.3 296 138670.6

mqkp13 31 265988.6 3218 327432.7

mqkp14 29 69101.97 674 118285.0

mqkp15 0 639669.2 1484 813689.7

mqkp16 9 16402.96 112 28368.6

mqkp17 1 158269.1 1962 234792.8

mqkp18 b b 560 845227.1

mqkp19 0 102,519 828 154908.4

mqkp20 0 69466.03 70 136993.8

mqkp21 0 123857.9 5140 1521982

mqkp22 0 269308.8 3700 305345.8

mqkp23 b b 40 67164.1

mqkp24 0 688,730 14,300 887967.1

a No optimal solution is found in LIN1.
b Unable to solve initial relaxation within 7200 s.
knapsack constraints on CPU time. For a given number of variables
and knapsack constraints, sometimes, but not always, low-density
problems take longer to solve than higher density problems except
LIN3 QP

# Nodes Relaxation # Nodes Relaxation

1381 188534.2 338 195952.0

2 6642 28409.6 0 37647.54

2315 517025.4 502 538595.7

411 25134.8 180 27737.15

1186 116745.5 204 124054.9

5 2 51809.7 10 67471.34

4 374 83214.6 872 89230.27

5128 775908.3 228 791227.9

647 185463.4 1568 209261.8

6 3193 63712.4 3622 71986.15

2514 103241.5 476 116356.5

303 175939.6 6 188541.6

4528 329672.0 26,380 345776.6

817 1173581.4 3108 175772.4

1891 834712.5 3500 880660.2

1 183 33758.51 1208 41632.36

1581 268141.7 13,206 290768.8

734 863241.5 1896 927377.1

621 171623.3 5684 196443.6

37 179023.7 2 218551.1

6186 1561731 1046 1621316

4109 318906.1 1080 337596.1

1 57 83461.4 324 133694.3

17,214 931671.8 1898 1015191
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the LIN3 model in some small problems. Likewise, for a fixed
number of variables and density, sometimes, but not always,
instances with fewer knapsack constraints are more readily solved
than those with a larger number of knapsack constraints. Addi-
tional testing will be needed to clarify these issues.

Overall, our computational results indicate that all four for-
mulations worked well on the small problems. However, with
growth in problem size, the performance of LIN1 lags behind that
of LIN2, LIN3 and QP. Furthermore, as the growth continues, LIN2
and LIN3 lag behind QP. Considering just the three linearizations,
LIN3 generally gave the best performance. While all three linear-
izations are very competitive with QP on small instances, QP
performed well across all three problem sets. For the large
instances, approaches based on linearizations run into computa-
tional difficulty due to the size of the LPs that need to be solved.
Given that efficient implementations of branch and cut algorithms
are now readily available for the QP formulation, QP stands out as
the best of the four models considered here. Moreover, given the
growth in size of the LPs inherent to any approach based on
linearizations, the QP formulation may prove to be a very good
choice compared to any linearization that might be considered.
Fig. 1. The impact of WC-ratio on CPU time for n¼10, 20, 50 in small problem set.
4. Summary and conclusions

In this paper we compared three linearizations and the original
quadratic formulation on a new set of test problems for the
quadratic knapsack problem. Much of the work reported pre-
viously in the literature concerns the relative strength of the
relaxations coming from various linearizations with little atten-
tion paid to actually finding optimal solutions and no attention at
all paid to problems with multiple knapsack constraints. Our
computational results indicate that the strength of the root
relaxation is not necessarily a good indication of overall perfor-
mance. This is consistent with findings reported in related papers.

Our results also indicate that problems with multiple knapsack
constraints can be effectively solved by branch and cut meth-
odologies and that the quadratic formulation, QP, was particularly
effective for medium to large sized problems consisting of
200–500 variables and 800 variables, respectively.

In this study we successfully addressed larger problems than
previously addressed in the literature. It is clear from our
computational experience, however, that problems of the type
considered here with 800 or more variables and multiple con-
straints remain computationally challenging for the exact meth-
ods we used in this study. Nonetheless, our results suggest that
the original quadratic formulation, rather than resorting to
linearizations of one kind or another, offers considerable promise
as a modeling construct for solving the class of problems
examined.

We note that the results reported here were obtained without
the use of pre-processing intended to strengthen the relaxations
associated with the four basic models considered here. Such
efforts may lead to enhanced performance and will be investi-
gated as part of our on-going research. Our future work will also
explore the use of advanced starts coming from modern heur-
istics. Moreover, we intend to investigate the use of Semi-definite
programming and other methods to improve the performance of
QP as well as solving even larger instances than considered here.
Fig. 2. The impact of WC-ratio on CPU time for n¼100,200 in small to medium

sized problem set.
Appendix. Report on level of difficulty of randomly generated
test problems

For the large problem set, none of four models can be solved
within the time limit of 3 h. This fact is a strong indicator of the
difficulty of these test problems. However, for smaller problems,
the level of difficulty cannot be measured solely by the CPU time
even though QKP is NP-hard in general. Very few QPK studies
include a discussion of problem difficulty. Hansen and Meyer [13]
and Forrester [22] are rare exceptions. Both papers offer a
discussion of difficulty and conclude that there is a positive
correlation between variable orderings and CPU time. In this
appendix, we give a brief report on two possible measures of
difficulty. Specifically, we examine the impact of constraint
coefficients (weight) to knapsack capacity as well as density of
objective function coefficients on CPU time.
1.
 Ratio of object weight to knapsack capacity (WC ratio):
Most greedy heuristics and surrogate constraint heuristics for
QKP create the initial solution by comparing the sum of object
weights aij in the constraint and the knapsack capacity bi and
select the objects whose total weight will not exceed bi. If the
ratio

P
aij=bi is large, fewer objects can be chosen in an initial

solution. If the ratio
P

aij=bi is small, more objects can be
chosen in the initial solution, suggesting that the problem may
be more difficult to solve. For QKP with multiple constraints,
we examine each constraint and take the smallest ratio value
for each problem into consideration. Then for all the test
problems we were able to solve optimally, we examine the
impact of this ratio on the CPU time. We report our results in
Figs. 1 and 2.
2.
 Density of objective function coefficients (Q matrix):
Previous studies [13,22] reported a positive correlation
between density and solution time. Given their findings, we



Fig. 3. The impact of density on CPU time for n¼10, 20, 50 small problems.

Fig. 4. The impact of density on CPU time for small to medium sized problems.
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examined our results to see if similar patterns were on display.
For the small and medium-sized problems we were able to
solve to optimality, we examined the relationship between
density of the Q matrix and CPU time. These results are
presented in Figs. 3 and 4.

A.1. Tentative conclusions

Of the two measures highlighted in this appendix, the first
approach (WC ratio) consistently indicates that problems with
small ratios, as expected, tend to take more CPU time. Most of the
problems in our test bed have small ratios indicating that they
can be expected to be challenging. The n¼10 variable problems
are an exception to this. These problems are simply small and
easy to solve regardless of the ratios.

Our results, however, are less clear with respect to our second
measure where Fig. 3 and 4 show no clear relationship between
density and CPU time. This is not consistent with earlier results
reported in the literature and it suggests that further testing is
necessary to more clearly establish the relationship between
density and CPU time.
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