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Abstract In recent years the unconstrained binary quadratic program (UBQP) has
grown in importance in the field of combinatorial optimization due to its application
potential and its computational challenge. Research on UBQP has generated a wide
range of solution techniques for this basic model that encompasses a rich collection of
problem types. In this paper we survey the literature on this important model, providing
an overview of the applications and solution methods.
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1 Introduction

The unconstrained binary quadratic programming (UBQP) problem is defined by

min xt Qx
s.t. x ∈ S

where S represents the binary discrete set {0, 1}n or {−1, 1}n and Q is an n-
by-n square, symmetric matrix of coefficients. This simple model is notable for
embracing a remarkable range of applications in combinatorial optimization. For
example, the use of this model for representing and solving optimization prob-
lems on graphs, facility locations problems, resources allocation problems, clus-
tering problems, set partitioning problems, various forms of assignment problems,
sequencing and ordering problems, and many others have been reported in the
literature.

Even more remarkable is the fact that, once given a UBQP formulation, these
problems can be solved by a UBQP method which is not specialized to exploit the
problem domain of any individual class of problems, to yield solutions whose quality
in many cases rivals or even surpasses the quality of the solutions produced by the
best specialized methods, while achieving this outcome with an efficiency that likewise
rivals or surpasses the efficiency of leading specialized methods.

In this paper we survey the literature on UBQP, both its applications and solu-
tion methods. While many important constrained nonlinear binary models have been
reported in the literature over the years, we focus our attention here on models
that naturally occur in the form of an unconstrained quadratic binary model and
those that have been re-cast into the form of UBQP. The paper is organized as
follows. In Sect. 2 we survey the range of applications that have been reported
in the literature. Section 3 then presents a survey of the solution methodologies
reported in the literature for solving UBQP. Section 4 highlights key theoretical work
and this is followed by Sect. 5 which wraps up the paper with our summary and
conclusions.

2 Applications

Some reported applications appear naturally in the form of UBQP while oth-
ers are “re-cast” into the UBQP form by employing various transformations. In
the sections below we examine these different categories of applications in turn.
Within sections, we present applications in the chronological order in which they
appeared in the literature to give the reader a sense of when certain topics were
addressed appeared in print, as well as progress made and trends in solution
methodologies.
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2.1 Natural UBQP problems/applications

The literature on UBQP goes back to the 1960s where the topics of pseudo-Boolean
functions and binary quadratic optimization were introduced by Hammer and Rudeanu
(1968).

Early papers related to UBQP concern applications in finance (Laughhunn 1970),
project selection (Rhys 1970), cluster analysis (Rao 1971), economic analysis (Ham-
mer and Shlifer 1971), traffic management (Witzgall 1975) and computer aided design
(Krarup and Pruzan 1978). While these applications actually take the form of con-
strained quadratic binary programs, they are mentioned here due to their historical
role in fostering an interest in quadratic binary applications and also because several
allow special cases that are precisely in the form of UBQP.

More recently many interesting applications that are expressed naturally in the form
of UBQP have appeared in various papers. Barahona et al. (1988) formulate and solve
the problem of finding ground states of spin glasses with exterior magnetic fields, an
important problem in physics, as an instance of UBQP. Computational results reveal
that the model produces high quality solutions to spin glass problems of realistic size
in reasonable amounts of computation time using 1980s technology.

Hansen and Jaumard (1990), in their work on the satisfiability problem, report their
experience using the UBQP model as an approach for representing and solving small to
medium sized Max 2-sat problems. Computational studies validated the attractiveness
of this approach to the Max 2-sat problem in terms of quickly producing high quality
solutions.

Boros and Hammer (1991) discuss the use of UBQP as an approach for modeling
the Max-Cut problem. Their paper highlights the relationship between UBQP, Max-
cut, Max 2-sat, and the Weighted Signed Graph Problem. The authors also present
a discussion of valid inequalities and facets for polyhedra that provide the basis for
further computational and theoretical work.

Alidaee et al. (1994) discuss two machine scheduling problems in the context
of UBQP: (1) scheduling n jobs on a single machine to minimize total weighted
earliness and tardiness, and (2) scheduling n jobs on two parallel identical processors
to minimize weighted mean flow time. In each case, the authors show how the problems
can be modeled in a straight-forward manner as an instance of UBQP.

Pardalos and Xue (1994) indicate how the maximum clique problem can be mod-
eled as an instance of UBQP. The authors also discuss the relationship between the
maximum clique problem, the maximum independent set problem, and the vertex
cover problem, indicating how each can be represented by UBQP. Finally, the authors
provide a survey of solution methods for the maximum clique problem.

De Simone et al. (1995), as in the earlier 1988 paper by Barahona, Grotschell,
Junger and Reinelt, adopt the UBQP model as a representation for the problem of
finding ground states for the spin glass problem. In this 1995 paper the authors use the
UBQP model to compute exact ground states for Ising spin glasses on 2-dimensional
grids with periodic boundary interactions, Gaussian bond distributions, and an exterior
magnetic field. Preliminary experiments with a branch and cut algorithm for optimizing
the UBQP form of the problem proved very promising, quickly producing high quality
solutions to large spin glass instances.
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Bomze et al. (1999) discuss the maximum clique (MC) problem and how it can
how it can be modeled in a variety of ways including a representation in terms of
UBQP. The authors provide a very broad and in depth discussion of a variety of
applications and of both exact and heuristic solution methods for the MC problem.
Computational experience with various solution approaches to the MC problem is also
presented.

Iasemidis et al. (2001) discuss the use of the UBQP model as part of a process
employed to predict the arrival of epileptic seizures. The entrainment between two
brain sites can be quantified from measures of electrical activity (EEG) of the brain.
The UBQP model was successful in identifying the most entrained sites leading to the
optimal location of electrode sites. In clinical trials this procedure was successful in
predicting epileptic seizures 20–40 min in advance of their occurrence.

Alidaee et al. (2005) discuss the number partitioning problem where the objective
is to assign numbers to subsets such that the sums of the numbers in each subset are
as close as possible to one another. The authors show that the n = 2 subset case can
be modeled as an instance of UBQP and that problems with n > 2 can be modeled as
a constrained version of UBQP. Extensions of the basic model along with computa-
tional experience for the n = 2 case are presented indicating the attractiveness of the
approach.

Kochenberger et al. (2005a) discuss their experience with adopting the UBQP
model to represent and solve Max 2-sat problems. Expanding the computational scope
reported earlier by Hansen and Jaumard (1990) on UBQP and the Max 2-sat problem,
they offer extensive computational experience on very large test problems with up to
1,000 variables and more than 10,000 clauses. Employing a basic form of tabu search
to solve the UBQP instances, best known solutions to most test problems were found
in a few seconds of computation time.

Neven et al. (2008) discuss the use of quantum adiabatic algorithms, which rep-
resent new approaches to NP-hard combinatorial problems, for solving the image
recognition problem. The authors indicate how the pattern recognition problem
of deciding whether two images contain the same object can be modeled as an
instance of UBQP, which they show is the general input format required by D-
Wave superconducting quantum AQC processors. Computational experience was not
reported.

Mahdavi Pajouh et al. (2013) discuss the use of the UBQP model for representing
the maximal independent set problem. The authors present an analysis of local max-
ima properties along with relations between continuous local maxima of the quadratic
formulation and the binary local maxima in the Hamming distance 1 and 2 neighbor-
hoods. These results are then used to construct effective local search algorithms for
the maximum independent set problem.

Kochenberger et al. (2013) discuss the Max Cut problem and how the UBQP model
can be effectively used to model and solve large scale instances. Using a tabu search
algorithm, extensive computational testing is reported on problems with up to 10,000
variables. Comparisons with other solution methods from the literature for the max
cut problem are provided, indicating the attractiveness of the UBQP/Tabu Search
approach.
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Table 1 Illustrative Known
Penalties

Classical constraint Equivalent penalty

x + y ≤ 1 P(xy)

x + y ≥ 1 P(1 − x − y + xy)

x + y = 1 P(1 − x − y + 2xy)

x ≤ y P(x − xy)

x1 + x2 + x3 ≤ 1 P(x1x2 + x1x3 + x2x3)

2.2 UBQP via reformulation

The applications of the previous section illustrate the widespread usefulness of the
UBQP model. The actual applicability of UBQP, however, is greatly extended due
to re-formulation procedures that re-cast a constrained problem into an equivalent
unconstrained binary quadratic model. Many re-formulations are accomplished by
including quadratic infeasibility penalties in the objective function as an alternative to
explicitly imposing constraints. In this manner a constrained model can be re-cast into
the form of UBQP. In fact, any linear or quadratic problem with linear constraints and
bounded integer variables can in principle be re-formulated as UBQP using quadratic
penalties.

For several simple constraints, appropriate quadratic penalties are known in advance
and can be used straight away. Examples of such penalties are given in Table 1 where
P is a large positive scalar.

Note that the penalty term in each case is zero if the associated constraint is satisfied,
and otherwise the penalty is positive. These penalties, then, can be directly employed
as an alternative to explicitly introducing the original constraints. For general con-
straints, however, appropriate penalty functions are not known in advance and need to
be “discovered.” A simple procedure (see for instance Hammer and Rudeanu 1968;
Hansen 1979; Hansen et al. 1993; Boros and Hammer 2002) for finding an appropriate
penalty for any linear constraint is given as follows:

Consider the general constrained problem of the form

min x0 = x Qx

s.t. Ax = b, x binary (1)

This model accommodates both quadratic and linear objective functions since the lin-
ear case results when Q is a diagonal matrix (observing that x2

j = x j when x j is a
0-1 variable). Under the assumption that A and b have integer components, problems
with inequality constraints can also be put in this form by representing their bounded
slack variables by a binary expansion. These constrained quadratic optimization mod-
els are converted into equivalent UQP models by adding a quadratic infeasibility
penalty function to the objective function in place of explicitly imposing the constraints
Ax = b.
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Specifically, for a positive scalar P:

x0 = x Qx + P (Ax − b)t (Ax − b)

= x Qx + x Dx + c

= x Q̂x + c

where the matrix D and the additive constant c result directly from the matrix multipli-
cation indicated. Dropping the additive constant, the equivalent unconstrained version
of the constrained problem becomes

U B Q P : min x Q̂x, x binary (2)

A suitable choice of the penalty scalar P can always be chosen so that the optimal
solution to UBQP is the optimal solution to the original constrained problem. For
ease of reference, the preceding procedure that transforms (1) into (2) will be called
Transformation #1.

Transformation #1 can be used in cases where an appropriate quadratic penalty
function isn’t known in advance. In certain special cases, as mentioned earlier, appro-
priate penalties are known and can be directly employed. One particularly important
case that arises in many constrained combinatorial problems is:

x j + xk ≤ 1 (3)

denoting a situation where a pair of binary choices are available and we must preclude
choosing both. As shown in the preceding table, an equivalent quadratic penalty for
this situation is simply

Px j xk (4)

Due to the frequency with which the constraint of (3) appears in many important
applications we single it out for special attention and refer to the penalty of (4) as an
alternative to the constraint of (3) as Transformation #2. Many of the applications that
follow were originally modeled as constrained 0/1 models and were recast into the
form of UBQP by using Transformation 1 and/or 2.

Other paths to reformulation exist as well. Often a well-chosen change of variable
can result in transforming a constrained model into the form of UBQP. This is par-
ticularly important in the context of certain optimization problems on graphs where
binary variables denoting whether or not an edge is chosen can be replaced by the
product of the two associated binary node variables. In making such a substitution, we
go from an “edge-oriented” model to a “node-oriented” model. This typically results
in a much smaller model in terms of both the number of variables and the number of
constraints.

The clique partitioning problem affords a good example for illustrating this
approach. The standard integer programming (IP) formulation (see for example Oosten
et al. 2001) for clique partitioning is:
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max
∑

(i, j)∈E

wi j xi j

s.t.

xi j + xir − x jr ≤ 1 ∀ all distinct i, j, r ∈ V

xi j ∈ {0, 1} f or all {i, j} ∈ E

The variable xi j is equal to 1 if the edge (i,j) is in the partition and is equal to 0
otherwise. The coefficient wi j is the weight of the edge (i,j) in the graph.

An alternative model results by changing from edge-based variables to node-based
variables. For this new model we add artificial edges as needed to produce a complete
graph and denote an upper bound on the number of cliques to be formed by Kmax.
Then, letting xik = 1 if node i is assigned to clique k and xik = 0 otherwise, an
equivalent model is:

max
n−1∑

i=1

n∑

j=i+1

wi j

K max∑

k=1

xik x jk

s.t.
k max∑

k=1

xik = 1 f or i = 1, n

In this formulation n is the number of nodes in the graph and wi j again denotes the
weight of edge (i,j). This model is much smaller than the standard IP in terms of both
number of variables and the number of constraints. Note also that it is of the form:

max x ′Qx

s.t.

Ax = b x binary

which can be re-cast into the form of UBQP using Transformation #1.

2.3 Specific application instances

Each of the applications presented below were originally modeled as a constrained
combinatorial problem and then re-cast into the form of UBQP. Once in this unified
form the problems were successfully solved by various heuristic means.

Lewis et al. (2005) address the problem of assigning tasks to processors in a dis-
tributed, multitasking computer architecture such that the sum of the resultant task
completion costs and inter-task communication costs are minimized. The standard
model for this problem is a constrained quadratic optimization model in binary vari-
ables with constraints ensuring that each task gets assigned to one of the processors
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available. The authors employ Transformation #1 to re-cast this model into the form
of UBQP which in turn is solved with a basic tabu search heuristic. Computational
experience with large-scale instances highlights the attractiveness of this approach.

Kochenberger et al. (2005b) discuss the classic vertex coloring problem and how it
can be effectively modeled and solved in the form of UBQP. A standard representa-
tion of the K-Coloring problem consists of two categories of constraints, one ensuring
that each node gets a color, and the other ensuring that adjacent nodes receive dif-
ferent colors. The authors use Transformation #1 on the first set of constraints and
Transformation #2 on the second to produce a UBQP representation of the problem.
Computational experience applying a tabu search method to standard test problems
from the literature indicates that this approach is very competitive with, and often
superior to, specialized methods for vertex coloring.

Similar reformulations, using transformations #1 and/or #2 have been reported for
other well-known combinatorial problems. Kochenberger et al. (2005c) examine the
use of UBQP as a tool for clustering microarray data into groups with high degrees
of similarity. Wang et al. (2006) discuss the problem of grouping machines and parts
together in a flexible manufacturing system in a manner that facilitates economies
in time and cost. Kochenberger et al. (2007) discuss the use of UBQP as a tool for
modeling and solving the generalized independent set (GIS) problem. In each case the
original model was re-cast into the form of UBQP and successfully solved in this new
form.

In addition, Lewis et al. (2008) discuss the classic set partitioning (SP) problem and
how the UBQP framework can be utilized for modeling and solving this important class
of problems. Computational experience using a basic tabu search heuristic on problems
with up to 15,000 variables and 5,000 rows and various densities is presented with
comparisons drawn with CPLEX. Also in 2008, Alidaee et al. (2008) discuss the use
of the UBQP model for representing and solving the well-known set packing problem.
Favorable computational experience with a wide variety of set packing problems with
up to 2,000 variables and 10,000 constraints is reported.

Lewis et al. (2009) discuss the Linear Ordering (LO) problem and how it can be
modeled and solved as an instance of UBQP. The standard model in the literature
for LO is a large 0-1 linear program with many constraints. For instance, a model
designed to order 150 items would have, in the classic model, more than one million
constraints. Rather than use the general procedure of Transformation #1, the authors
show how to easily re-cast the constrained model into the unconstrained form of UBQP
by using a special quadratic penalty that is uniquely suitable for the problem at hand.
Computational experience with both medium and large sized test problems reveals the
effectiveness of this approach.

Douiri and Elbernouss (2012) discuss the Sum Coloring Problem which generalizes
the classical vertex coloring problem by seeking a valid coloring of vertices such that
the sum of the colors assigned to all vertices in minimized. The transformation to
UBQP is accomplished by using Transformation #1 on the constraints that ensure
each vertex gets a color and Transformation #2 on the constraints that require adjacent
nodes to have different colors. Computational experience with the resulting UBQP
model was carried out using a genetic algorithm. Results obtained on a variety of
standard test problems illustrate the attractiveness of this approach.
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Wang and Xu (2013) discuss another variant of the classical vertex coloring prob-
lem, called the Robust Graph Coloring Problem (RGCP), where for a given feasible
coloring, a penalty is incurred for each non-adjacent vertices that have the same color
assigned. The optimization problem is to determine a feasible coloring that minimizes
the sum of the penalties associated with the edges in the complementary edge set with
endpoints that are assigned the same color. As with the previously discussed coloring
problems, the transformation to UBQP is carried out using a combination of Transfor-
mation #1 and Transformation #2. Computational experience with several variations
of a genetic algorithm on a set of test problems illustrates the effectiveness of the
UBQP approach for modeling and solving RGCP.

Lewis et al. (2013) discuss the use of UBQP for modeling and solving the Gen-
eralized Vertex Covering Problem (GVCP). GVCP generalizes the minimum weight
vertex covering problem by employing a three tier cost structure for each edge and
charging a cost depending on whether one, both or neither end point of a given edge is
covered by the subset chosen. The optimization problem is to find the subset of nodes
that minimizes the sum of both the node and edge costs. The model presented previ-
ously in the literature for GVCP is a large 0-1 linear program with a binary variable
for each node in the graph and two binary variables for each edge. The authors here
show how GVCP can readily be formulated as UBQP by employing a simple change
of variable such that all edge variables and all constraints are eliminated. Computa-
tional experience comparing the original linear model and the equivalent UBQP model
illustrates the superiority of UBQP for this class of problems.

3 Solution methods

While a few special cases of UBQP are polynomially solvable (see for instance Picard
1976; Barahona 1986; Pardalos and Jha 1991), UBQP in general is an NP-hard problem
(see Pardalos and Jha 1992) and for all but small to moderate sized problems, heuristic
methods are required to produce good solutions in a reasonable amount of computer
time. Nonetheless, there is a sizable literature on exact methods for UBQP. In the
sections below we first survey the exact methods that have appeared in the literature
followed by the heuristic methods described in the literature for solving UBQP.

3.1 Exact methods

The literature on exact methods for UBQP introduces a variety of algorithms, each
with the virtue of terminating, given enough time and memory, with a globally optimal
solution. Most approaches involve a tree search of a general branch-and-bound nature
but other methods exist as well. In this section we survey, in chronological order, the
prominent methods reported over the past thirty–plus years.

Gulati et al. (1984) describe a branch and prune algorithm for solving UBQP which
is designed to determine all local minimizing points, terminating with the global
optimal solution revealed as the incumbent. Computational experience with random
test problems with up to 125 variables is given.
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Carter (1984) proposes a branch and bound algorithm for UBQP that first employs
modified form of Cholesky factorization to transform an indefinite instance of UBQP
into an equivalent positive definite form of the problem. Variable elimination based
on hessian information is used accelerate search process. Computational experience
on a variety of random test problems with various characteristics and with up to 30
variables is given.

Williams (1985) describes a branch and bound algorithm for UBQP that success-
fully solved a set of randomly generated test problems with up to 100 variables. The
algorithm begins with a reduction procedure that obtains a good starting solution and
subsequently uses the “roof dual” to help guide the depth-first branch and bound
search. Comparisons with other methods are given.

Barahona et al. (1989) describe an approach to solving UBQP that first reduces
the problem to an equivalent instance of a max-cut problem. This, in turn, is solved
by a linear programming-based branch and bound method. Constraints based on the
cut polytope are used to improve node information and enhance the search process.
Computational experience is reported on random problems up to size 100 variables
along with comparisons with other methods.

Kalantari and Bagchi (1990) describe the adaptation of an algorithm for mini-
mizing linearly constrained concave quadratic functions for the purpose of solving
UBQP. Their method starts with a transformation to ensure the Q matrix is positive
definite, giving an equivalent concave quadratic minimization problem. The authors
then describe their branch-and-bound method where subproblems are defined by fix-
ing a variable at zero or one and bounds are computed by minimizing a linear convex
envelope over the feasible region of the subproblem. Computational testing is reported
on random problems with up to 50 variables.

Pardalos and Rodgers (1990a) describe a branch-and-bound algorithm for solving
UBQP that successfully solved a variety of test problems with up to 200 variables.
The algorithm, which uses no multiplications or divisions, incorporates dynamic pre-
processing techniques for fixing variables and heuristics for finding good starting
points. In (1990b) the authors describe a parallel version of the algorithm imple-
mented and tested on a hypercube architecture. Computational experience and an
analysis of the speedup achieved are presented. Then in (1992), the authors describe a
variation of their branch-and-bound algorithm designed for the UBQP representation
of the maximum clique problem. Extensive computational experience is reported for
alternative branching rules and data structures, in route to producing a specialized
algorithm optimized for the maximum clique problem with up to 1,000 vertices and
150,000 edges.

Billionnet and Sutter (1994) describe a branch-and-bound algorithm for solving
UBQP that successfully solved a large variety of random test problems with up to
100 variables. Their innovation was in the calculation of lower bounds to guide the
search process. At each node in the search tree, a lower bound is computed by combin-
ing information obtained from roof duality, a quadratic posiform associated with the
directed cycles of an implications graph, and a component obtained from the induced
posiform of degree 4. Computational experience is given comparing the method with
other methods.
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Palubeckis (1995) describes a branch-and-bound algorithm for solving UBQP uti-
lizing heuristically generated subproblem solutions that are mapped onto the zero
n-vector leading to transformed subproblems in the form of the original UBQP model.
Special classes of polytope facets are employed in computing bounds used to guide
the search process. Computational experience with random problems with up to 100
variables, and additional experience with several real problems having to do with
printed circuit board design, illustrate the efficiency of the method and indicate that it
compares favorably with other contemporary methods.

Helmberg and Rendl (1998) describe a branch-and-bound algorithm for solving
UBQP based on semidefinite relaxations and cutting planes to enhance the quality of
the bounds produced. The semidefinite relaxations are solved by an interior point algo-
rithm specialized for semi-definite programs. Computational experience is reported
on a set of UBQP instances of the max-cut variety with up to 100 variables. While the
approach was robust in that it was successful in solving the test problems attempted,
run times were generally not competitive with other recently reported exact methods
for UBQP.

Hansen et al. (2000) describe an enhanced version of the branch-and-bound method
of Pardalos and Rodgers (1990a) that led to favorable comparisons with the original
algorithm on a standard set of problems with up to 100 variables. The new method
employs improved bounds obtained by first transforming the problem to an equivalent
posiform which yields tighter roof dual bounds as well as effective variable elimination
test that efficiently guide the tree search process. The roof dual bounds are computed
via a maximum flow algorithm.

Huang et al. (2006) describe a depth-first branch-and-bound method that begins by
first formulating an equivalent bi-level formulation of UBQP. This new formulation
facilitates bounding procedures and pruning strategies, utilizing a gradient midpoint
method that proved to be effective in early testing. Computational experience with
random test problems of various densities and with up to 60 variables is presented.

Pardalos et al. (2006) discuss the connections between discrete optimization and
continuous optimization in general with a focus on formulations that embed the initial
discrete domain into a larger continuous space. The authors then focus on the gen-
eral UBQP model, indicating how a reformulation based on an appropriate diagonal
perturbation, causing the Q matrix to be negative semidefinite, yields an equivalent
continuous problem of minimizing a quadratic concave function over the unit hyper-
cube. A discussion of this approach applied to the maximum clique problem is given.

Pan et al. (2008) describe a continuous approach for solving UBQP based on the
Fischer-Burmeister nonlinear complementarity function. Rather than employing relax-
ations and bounding information in a tree search scheme, the authors reformulate
UBQP as a continuous problem with equilibrium constraints. In turn, the optimal
solution to this model is found by a global continuation algorithm utilizing a strictly
convex global smoothing function and solving a sequence of unconstrained minimiza-
tion problems. Computational experience is reported with random problems with up
to 1,000 variables, indicating the effectiveness of this approach.

Gueye and Michelon (2009) present a general framework for constructing lineariza-
tions of UBQP which, in turn, can be solved in principle by standard optimizers for
mixed integer linear programs. The framework, which contains existing lineariza-
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tion methods in the literature as special cases, consists of decomposing the objective
function into component matrices, identifying a complete linear representation of the
polytope for each component, and then adding constraints that link the components
together. A new linearization, derived from the general framework, is described and
computational comparisons are given with existing methods illustrating the potential
of the new approach.

Pham Dinh et al. (2010) discuss a new continuous approach for solving UBQP
that is based on DC (difference of convex functions) programming. In their approach,
principles of DC programming are used to develop a local optimization algorithm
(DCA) that solves a finite number of linear programs leading to a locally optimal
solution. Globally optimal solutions are produced by embedding DCA in a branch-
and-bound algorithm. Computational experience on problems from the literature with
up to 100 variables, along with comparison with other methods, is given.

Mauri and Lorena (2011) present a new algorithm for solving UBQP based on
Largangean decompositions. Their method starts with a linearization of UBQP rep-
resented by a graph. In turn, the graph is partitioned into clusters of vertices forming
a dual problem that is solved by a subgradient algorithm. Clusters are formed using
the well-known METIS heuristic and the linear Lagrangean subproblems are solved
using CPLEX. In (2012a) the authors present a column generation alternative to the
subgradient algorithm leading to performance improvement. In (2012b) the authors
present and test further enhancements to their column generations approach for solving
UBQP. Throughout all, computational experience on standard UBQP test problems
with up 500 variables is given. Comparisons with other decomposition-based methods
are given indicating the potential of the procedures proposed here.

Li et al. (2012) present a new algorithm for solving UBQP based on the inherent
geometric properties of the minimum circumscribed sphere containing the ellipsoidal
contour of the objective function. Based on these properties, effective bounding infor-
mation as well as new procedures for optimally fixing variables are derived. In addition,
this geometric approach led to new optimality conditions for UBQP. The new bound-
ing techniques and variable fixing conditions were combined in a branch-and-bound
method and tested on standard problems with up to 200 variables. Comparisons drawn
with other recent methods in the literature indicate the attractiveness of the method
proposed.

In addition to the exact methods surveyed above from the literature, we point out that
several commercial methods, based on branch-and-cut techniques, are now available
and hold considerable promise for directly optimizing moderate sized instances of
UBQP. See for example the paper by Billionnet and Elloumi (2007) which reports on
the use of the branch-and cut quadratic integer optimizer available from CPLEX.

3.2 Heuristic and Metaheuristic methods

The NP-hard nature of UBQP along with its application potential has motivated a large
number of papers in recent years describing various heuristic methods for quickly
finding high quality solutions to medium to large sized problem instances. Although
a few of these methods are simple enough to qualify as heuristics, those that generate
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the best solutions are metaheuristic procedures that incorporate compound strategies
considerably more advanced than in the basic heuristics. These methods are surveyed
below:

Boros et al. (1989) develop a Devour Digest Tidy-up (DDT) procedure to rapidly
obtain a solution to UBQP. Based on the posiform expression of UBQP’s objective
function, the proposed method includes devour, digest and tidy-up phases. The devour
phase identifies a term with the largest coefficient and sets it to 0 in terms of minimiza-
tion. The digest phase draws logical conclusions for the items from the devour phase.
The tidy-up phase finally substitutes the logical consequences previously derived into
the current quadratic function. Computational experience indicates the effectiveness
of the method proposed, in particular on problems of low density.

Glover et al. (1998) propose an adaptive memory tabu search algorithm, which
incorporates a strategic oscillation scheme to enable the search to go beyond the local
optimum obtained by constructive and destructive phases. A key feature of this method
lies in the use of a critical event memory, that collects recency and frequency informa-
tion from critical events (moves that causes the solution values to decrease), to guide
the oscillation process. Another feature lies in the use of adaptive oscillation depths.
Extensive computational experience discloses that the proposed method outperforms
the best exact and heuristic methods previously reported in the literature in terms of
speed and solution quality.

Glover et al. (1999) describe an enhanced version of their previous adaptive memory
tabu search algorithm. A simple but effective scheme is proposed for accelerating the
evaluation of moves and for updating associated problem information. In addition,
methods for generating high quality initial solutions and for creating additional trial
solutions at critical events are also introduced. Computational experience with up to
1,000 variables reveals this enhanced version can produce high quality solutions within
several minutes.

Beasley (1998) adapts tabu search and simulated annealing to solving UBQP. The
tabu search implementation incorporates a strategy in which, once an improved solu-
tion is found, a simple local search is successively employed to perform moves irre-
spective of their tabu status. Contrary to the tabu search procedure, a local search is
applied only at the end of the simulated annealing process. Computational compar-
isons indicate that their tabu search generally performs better than simulated annealing
for small and medium instances but worse for large instances.

Alkhamis et al. (1998) present a simulated annealing based heuristic with a well-
selected cooling schedule. Tested on several hundred test problems, the proposed
heuristic outperforms several algorithms based on bounding techniques, in particular
with respect to computational time. Additional analysis shows that initial solutions
and the matrix density have limited influence on the effectiveness of the simulated
annealing algorithm.

Merz and Freisleben (1999) devise a hybrid genetic algorithm, in which a simple
local search is incorporated into the traditional genetic algorithm. The crossover oper-
ator is a variant of uniform crossover, requiring the generated offspring solutions to
have the same hamming distance from the parents. The population updating criterion
refers to the quality of solutions, assuring that each solution occurs only once in the
population, as customarily done in scatter search methods. A diversification compo-
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nent is launched when the average hamming distance of the population drops below a
threshold or the population is not updated for more than 30 consecutive generations.
Computational experience shows that a simple genetic algorithm is sufficient to find
best known results for problem instances with less than 200 variables but for those
with a large number of variables, local search is needed for attaining high quality
solutions.

Amini et al. (1999) present a scatter search approach, which consists of a diversi-
fication generation method, a solution improvement method, a reference set update
method, a subset generation method and a solution combination method. The diversi-
fication generation method systematically generates a collection of diverse trial solu-
tions based on a seed solution by setting an incremental parameter that determines
which bits of the seed solution should be flipped. The improvement method performs
a compound move that sequentially cycles among three types of candidate moves until
no attractive move can be identified. The reference set update method replaces solu-
tions in the reference set with new candidate solutions using the quality measurement.
The solution combination method uses linear combination of solutions in a subset
derived from the subset generation method to produce new solutions. Since some
variables may receive fractional values in the solution obtained in the linear combi-
nation, a rounding procedure is employed to recover integer values. Experiments on
three classes of problems show the attractiveness of the proposed method.

Lodi et al. (1999) present an evolutionary method for solving UBQP. The proposed
algorithm is characterized by the following features. First, a preprocessing phase is
applied to fix certain variables at their optimal values and keep them unchanged during
each successive round of local search, hence resulting in a reduced problem scale. Sec-
ond, a local search procedure that alternates between construction phase and destruc-
tive phases is used to get an improved solution. Finally, a uniform crossover operator is
used to produce offspring solutions, where variables with common values in parental
solutions are temporarily fixed in this round of local search. Computational experience
on problem instances with up to 500 variables is given. A further analysis demonstrates
that the preprocessing phase is effective for small problem instances but is unable to
appreciably reduce the problem size for large ones.

Katayama et al. (2000) propose a genetic local search algorithm for solving UBQP.
Their local search procedure integrates 1-flip moves dedicated to going into new good
search area and k-flip moves dedicated to solution improvement. A traditional uniform
crossover and a simple mutation operator are joined to generate a suitable offspring
solution. A diversification/restart strategy is incorporated to maintain a diversified
population. Tests on large problem instances indicate the effectiveness of the proposed
algorithm.

Katayama and Narihisa (2001) present a simulated annealing algorithm with an
innovative use of multiple annealing processes to enhance the search. Each annealing
process takes the best solution found in the previous annealing process as the initial
solution and employs a different initial temperature. Experimental results demonstrate
the performance of the proposed algorithm, especially for large instances with 2,500
variables.

Merz and Freisleben (2002) describe a greedy heuristic and two local search algo-
rithms based upon 1-flip and k-flip neighborhoods. The greedy construction procedure
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starts from a solution with all variables assigned to 0.5 (the so called third state) and
each constructive step picks a variable with probability proportional to the gain value
when changing the variable’s value from 0.5 to 0 or 1. Each iteration of the 1-flip
local search proceeds to the neighbor solution with the best solution quality. The k-
flip local search borrows the idea from the Lin-Kernighan algorithm of Kernighan
and Lin (1970) for solving the graph partitioning problem to efficiently reduce the
neighborhood exploration. Each k-flip move consists in repeating performing the best
1-flip move until all 1-flip moves are performed and picking the best from the resulting
solutions. Computational comparisons disclose the superiority of the multistart k-flip
local search combined with randomized greedy initial solutions.

Glover et al. (2002) propose several one-pass heuristics to advance the Devour
Digest Tidy-up (DDT) method of Boros et al. (1989). Based on the hypothesis that
setting multiple variables with value 1 or 0 in a pass may lead to worse performance, the
idea is to guarantee only one variable gets the implied assignment in each pass. The pro-
posed one-pass heuristics differ in strategies for evaluating contributions of variables.
Computational experience indicates that the method outperforms the DDT method but
no single one-pass heuristic dominates the others on every problem instance.

Palubeckis and Tomkevicius (2002) present a greedy random adaptive search pro-
cedure (GRASP) which cycles between a construction phase and a local search phase.
Each step in the construction phase picks a variable from a candidate list with probabil-
ity proportional to the gain value of this variable, where the candidate list is composed
of a certain number of variables with the largest gain values, calculated according
to a specific gain function. The local search phase implements a simple ascent algo-
rithm. Two enhanced versions are tested, which result by replacing local search with
tabu search and by combining a classic random restarting procedure with tabu search.
Computational comparisons illustrate the merit of incorporating greedy construction
based initial solutions and tabu search.

Palubeckis (2004) examines five multistart tabu search strategies dedicated to the
construction of an initial solution. The first multistart strategy produces a new initial
solution in a random way. The second identifies a candidate set of variables whose
values are prone to change when moving from the current solution to an optimal one
and then applies a steepest ascent algorithm where variables not included in this can-
didate set are fixed at specific values. The third multistart strategy is the same as the
constructive phase proposed in Palubeckis and Tomkevicius (2002). The fourth uses
a set of elite solutions to calculate the probability of each variable being assigned
value 1. If the probability for a given variable is larger than 0.5, then this variable
is assigned to be 1 in the constructed solution; otherwise it is assigned to be 0. The
last multistart strategy uses a perturbation scheme of changing the problem instance
at hand, followed by a short run of tabu search on the modified instance. Extensive
comparisons on problem instances with up to 7,000 variables demonstrate the algo-
rithm using the second multistart strategy performs better than the other proposed
alternatives.

Merz and Katayama (2004) conduct landscape analysis and observe that (1) local
optima of the UBQP problem instances are concentrated in a small fraction of the
search space; (2) the fitness of local optima and the distance between local optima and
the global optimum are correlated. Based on the observations, they propose a memetic
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algorithm in which an innovative variation operator is used to generate an offspring
solution and the k-flip local search proposed in Katayama et al. (2000) is used to
improve solution quality. The variation operator introduces new alleles not contained
in both parents by referring to the move gain of performing 1-flip moves, avoiding
the rediscovery of local optima already extensively visited. Comparisons with other
algorithms demonstrate the effectiveness of the proposed algorithm.

Boros et al. (2006) present several preprocessing techniques to simplify the UBQP
problem. The purpose of the preprocessing simplification is to provide several fea-
tures, including lower bounds for the minimum of the objective function, optimal
assignments for some variables, and binary relations between the values of certain
pairs of variables and subproblems decomposed from the original problem. The
simplification is achieved by using basic techniques such as first-order derivatives,
second-order derivatives or roof-duality, and by using integrative techniques that
combine the conclusions derived from the basic techniques. Computational experi-
ence on numerous problem classes shows the value of the proposed preprocessing
techniques.

Palubeckis (2006) presents an iterated tabu search algorithm which uses a dedi-
cated perturbation mechanism to enhance the high-quality solution obtained by the
tabu search procedure. Each step of the perturbation constructs a candidate list of a
limited size consisting of variables with largest 1-flip move gains with regard to this
current solution, from which a variable is randomly selected and flipped to complement
the value of this variable. The current solution is thus updated and the next pertur-
bation step continues until the number of perturbed variables reaches the specified
number. Comparisons with state-of-the-art algorithms disclose the competitiveness of
the proposed algorithm in spite of its simplicity.

Boros et al. (2007) present a local search scheme for solving UBQP. Starting from
an initial solution, each iterative step constructs a candidate set from which a variable
is picked and its value is changed to its complement, thus moving to the next solu-
tion. This iterative procedure repeats until the candidate set becomes empty. Based
on the above scheme, they investigate five initialization methods, two candidate set
construction methods and four variable selection methods, thus reaching up to 40
local search alternatives. Experiments on multiple benchmark instances indicate that
the local search alternative combining the following methods achieves the best perfor-
mance. The initial method assigns each variable with a fractional value equaling to the
proportion of the sum of all the positive entries of the matrix in the sum of the absolute
value of each entry of the matrix. The candidate set construction method constructs a
candidate set consisting of variables that yield an improvement in the current solution
by flipping its value regardless of whether or not it was already flipped in the previous
iteration. The variable selection method selects from the candidate set the variable
with the largest improvement to the current solution.

Glover et al. (2010) present a diversification-driven tabu search algorithm, which
alternates between a basic tabu search procedure and a memory-based perturbation
strategy guided by a long-term memory. Three memory structures are introduced in
the perturbation strategy: (1) a flipping frequency vector to record the number of
times a variable has been flipped from the initial iteration until the current iteration;
(2) an elite set of solutions to record a certain number of best local optimal solutions;
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(3) a consistency vector to count the times each variable is assigned a given value in
the set of elite solutions. Based on the memory information, the perturbation opera-
tor modifies an elite solution by favoring variables with low flipping frequency and
high consistency to flip. Comparisons drawn with several algorithms proposed by
Palubeckis (2004, 2006) disclose the superiority of this algorithm.

Lü et al. (2010a) present a hybrid metaheuristic approach which has the following
features. First, it combines a traditional uniform crossover operator with a diversi-
fication guided path relinking operator to guarantee the quality and diversity of an
offspring solution. Second, it defines a new distance by reference to variable’s impor-
tance and employs a quality-and-distance criterion to update the population. Finally, a
tabu search procedure is responsible for intensified examination around the offspring
solutions. Computational comparisons with best performing algorithms indicate the
effectiveness of this hybrid algorithm.

Lü et al. (2010b) develop a hybrid genetic tabu search with multi-parent crossover
to solve UBQP. The proposed algorithm jointly uses traditional uniform crossover
and logic multi-parent combination operators to generate diversified offspring solu-
tions. Computational experience is given showing the competitiveness of the proposed
algorithm.

Cai et al. (2011) present a memetic clonal selection algorithm with estimation
of distribution algorithm (EDA) guided vaccination for solving UBQP. The proposed
algorithm adopts EDA vaccination, fitness uniform selection scheme and adaptive tabu
search to overcome the deficiencies of traditional clonal selection algorithm. Experi-
mental comparisons indicate the tabu search algorithm enhances the performance of
the clonal selection algorithm.

Shylo and Shylo (2011) develop a global equilibrium search which performs multi-
ple temperature cycles. Each temperature cycle includes an initial solution generation
phase and a tabu search phase. The method to generate an initial solution employs
historical information to determine the probability that a variable receives the value
1. The tabu search procedure requires that each admissible move leads to a solution
with hamming distance to a reference set surpassing a distance threshold. Computa-
tional comparisons with several algorithms indicate the attractiveness of the proposed
algorithm.

Hanafi et al. (2013) devise five alternative DDT heuristics based on different rep-
resentations of the BQO formulation. DDT1 to DDT4 respectively have standard,
posiform, bi-form and negaform representations and DDT5 has a posiform repre-
sentation combined with a one-pass mechanism. One obvious difference between
the DDT alternatives proposed here and those proposed by Boros et al. (1989) and
Glover et al. (2002) lies in the use of an r-flip local search procedure to improve
solutions obtained by DDT constructions. Extensive tests on small, medium and large
benchmark instances disclose that (1) DDT3 with the bi-form representation generally
produces the best results for medium and large instances; (2) the r-flip local search
contributes to significant improvement of the results of the proposed DDT methods
with only a slight increase of time consumption.

Wang et al. (2011) present a tabu Hopfield neural network with an estima-
tion of distribution algorithm (EDA). The cooperation between long term mem-
ory of EDA with the short term memory of tabu search prevents the network from
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becoming trapped in local optima. Computational testing indicates the superior-
ity of the proposed algorithm compared to other Hopfield neural network based
algorithms.

Lü et al. (2011) study neighborhood union and token-ring search methods within
a tabu search algorithm. They focus on two neighborhoods, N1 consisting of 1-flip
moves and N2 consisting of a chosen subset of 2-flip moves. The neighborhood union
includes the strong neighborhood union that picks each move from both N1 and N2
and the selective neighborhood union that picks a move from N1 with probability p
and N2 with probability 1 − p. The token ring search continuously performs move
in N1 until no improvement is possible and then switches to perform move in N2 to
continue the search. Computational comparisons reveal the superiority of the token
ring search over the neighborhood union.

Wang et al. (2012a,b,c) present two path relinking algorithms, which are composed
of a reference set construction method, a tabu search based improvement method, a
reference set update method, a relinking method and a path solution selection method.
The proposed algorithms differ from each other mainly on the way they generate the
path, one employing a greedy strategy and the other employing a random strategy.
Extensive computational experience and comparisons with several state-of-the-art
algorithms highlight the attractiveness of the proposed algorithms in terms of both
solution quality and computational efficiency.

Wang et al. (2012a,b,c) propose a simple GRASP-Tabu Search algorithm working
with a single solution and an enhanced version by combining GRASP-Tabu Search
algorithm with a population management strategy based on an elite reference set.
In the basic version, the initial solution is constructed according to a greedy random
construction heuristic. In the enhanced version, a new solution is reconstructed by first
inheriting parts of the good assignments of one elite solution to form a partial solution
and then completing the remaining parts as the basic version does. Experimental
tests on a large range of both random and structured problem instances disclose that
the proposed algorithms, in particular the enhanced version, yield very competitive
outcomes.

Wang et al. (2012a,b,c) present a backbone guided tabu search algorithm which
alternates between a basic tabu search procedure and a variable fixing/freeing phase
based on identifying strongly determined variables. While the tabu search phase
ensures the exploitation of a search space, the variable fixing (freeing) phase dynami-
cally enlarges (reduces) the backbone of assigned values that launches the tabu search
exploration. Experiments show that the proposed algorithm obtains highly competi-
tive outcomes in comparison with the previous best known results from the literature.
A direct comparison with the underlying tabu search procedure confirms the merit of
incorporating backbone information.

As indicated in the papers of this section, our ability to efficiently solve large
instances of UBQP by heuristic means has grown substantially in recent years. It
is common now for authors to report computational experience on problems with
7,000–10,000 variables. Note that the set partitioning application discussed in Sect.
2.3 by Lewis et al. (2008) reported computational experience on problems up to 15,000
variables.
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4 Key theoretical results

By far the majority of the papers in the literature related to UBQP are primarily devoted
to applications or various solution schemes, either exact or heuristic in nature. As a
result, our priority in this paper has been to focus our survey on applications and
solution methodologies. Many of the articles surveyed in Sect. 3 above, however,
contain a discussion of the theoretical results relevant to the method being put forth.
That is, these papers are mainly about the method at hand but may also contain a
discussion of underlying theory. As a result, we’ve not explicitly highlighted theoretical
issues but rather left them to be discovered, as might be appropriate, as part of the
articles on applications and solutions methods surveyed. Nonetheless, there are a few
recent papers in the literature of particular note focused on theoretical issues pertaining
to UBQP. It is these papers that we highlight here in this section.

Carraesi et al. (1999) present an exact algorithm for testing the optimality of a given
solution for a quadratic 0-1 unconstrained problem. Their method, based on necessary
and sufficient conditions introduced by Hirriart-Urruty for general convex problems,
expands their earlier work (1995) which was an approximation scheme for testing
solutions.

Beck and Teboulle (2000) characterize global optimal solutions for UBQP as well
as discussing the relationship between optimal solutions to UBQP and the optimal
solutions of its continuous relaxation. They derive a sufficient optimality condition
which guarantees that a given feasible point is a global optimal for UBQP as well as
a necessary global optimality condition.

Jeyakumar et al. (2007) examine the relationship between the global optimality of
nonconvex constrained optimization and Lagrange multiplier conditions, establishing
sufficient as well as necessary conditions for global optimality for general quadratic
minimization problems with quadratic constraints. This analysis led, as a special case,
to new sufficient and necessary global optimality conditions for UBQP that are sharper
than those given earlier by Beck and Teboulle.

Xia (2009), by analyzing local sufficient optimality conditions, also extended the
Beck and Teboulle results by developing tighter sufficient optimality conditions. In
addition, without making the positive-semidefinite assumption, Xia examines the rela-
tionship between local/global minimizers of UBQP and the KKT points of the con-
tinuous relaxation, further extending previous results in the literature.

Gao and Ruan (2010) present a discussion of canonical duality theory, designed
in general for a wide class of nonconvex/nonsmooth/discrete problems. The authors
show how this duality theory can be adapted for the quadratic case with binary con-
straints. Conditions are given that allow instances of UBQP to be converted into
smooth concave maximization dual problems over a closed convex feasible region
without a duality gap. Finally, the relationship between canonical duality theory and
semi-definite programming for UBQP is discussed.

Zheng et al. (2012) present new sufficient conditions for verifying zero duality gap
in nonconvex constrained quadratic programs and then show how the results specialize
for UBQP. In related work, Sun et al. (2012) investigate the duality gap between UBQP
and its semi-definite programming relaxation. Making the connection between the
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duality gap and the cell enumerations of hyperplane arrangement in discrete geometry,
estimates of the duality gap can be derived, yielding improved lower bounds for UBQP.

We note that there are several theoretical papers in the literature on the constrained
version of UBQP that don’t explicitly consider the pure UBQP model but are nonethe-
less relevant to our work in that UBQP is a special case of the constrained cases
considered. Notably, Pinar (2004) gives a discussion of sufficient global optimality
conditions for the problem of minimizing a quadratic function in binary variables
subject to equality quadratic constraints. Lu et al. (2011) presents a discussion of
KKT conditions and conic relaxations to develop sufficient conditions that generalize
known positive semi-definiteness results for finding globally optimal solutions for the
problem of minimizing a UBQP subject to inequality quadratic constraints. Finally,
Li (2012) presents an extension of Pinar’s global optimality conditions for the quadratic
equality constrained case along with presenting conditions enabling global optimality
to be assessed by checking the positive semi-definiteness of a related matrix.

5 Summary and conclusions

Interest in UBQP has grown substantially in recent years as researchers have discov-
ered the remarkable ability of this simple model form to represent a wide variety of
combinatorial problems along with its computational challenge, particularly as model
sizes have increased. Due to its NP-hard nature, methods capable of producing exact
solutions are limited to modest sized applications, giving way to modern heuristic
methods for larger models. Even today, exact methods appear to be limited to a few
hundred variables. In an effort to realize the application potential of UBQP as model
size scales to higher levels, most research is focused on metaheuristic methods of one
kind or another. The results are encouraging: Articles in the 80s were reporting on
solving problems with 100–200 variables while more recent articles are reporting on
problems with up to 15,000 variables. To a large extent, this growth in performance is
due to advances in both algorithm design and computer hardware.

Successfully moving to the next order of magnitude in terms of model size will
require creative schemes for handling very large Q matrices along with improved
algorithmic methods. Various partitioning and multi-level methods hold particular
promise here but the door is open for other innovations as well. Advances in computer
performance, both in terms of storage and speed, can also be expected to lend a
hand in allowing larger applications. Moreover, developments in the area of quantum
computing, as illustrated by the work by Neven et al. (2008), represent emerging
technologies with a potential for solving combinatorial problems as represented by
UBQP. Future papers will reveal which of these research areas, or indeed, if some
other approach, will contribute to facilitating solutions to UBQP as application size
continues to scale upward.
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