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1. INTRODUCTION

We consider the constrained global optimiza-
tion problem (P) expressed in the following 
general form:

(P) minimize f(x)	
      subject to:
      G(x) ≤ b	
      x nÎ  	

where x is an n-dimensional vector of decision 
variables, G is an m-dimensional vector of 
constraint functions, and without losing gen-
erality the vector b contains upper bounds for 
these functions. The set S is defined by simple 
bounds on x, and we assume that it is closed 
and bounded, i.e., that each component of x has 
a finite upper and lower bound.

We introduce strategies for solving (P) 
which are based on pseudo-cuts, consisting 
of linear inequalities that are generated for 
the purpose of strategically excluding certain 
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points from being admissible as solutions to 
an optimization problem. The pseudo prefix 
refers to the fact that these inequalities may 
not be valid in the sense of guaranteeing that 
at least one globally optimal solution will be 
retained in the admissible set. Nevertheless, a 
metaheuristic procedure that incorporates oc-
casional invalid inequalities with a provision 
for replacing them can yield an aggressive 
solution approach that can prove valuable in 
certain settings. The use of pseudo-cuts to cre-
ate temporary restrictions in a search process 
was suggested in Glover (1989) in the context 
of a tabu search procedure. In this approach 
the cuts are treated in the same way as other 
restrictions imposed by tabu search, by drawing 
on a memory-based strategy to cull out certain 
cuts previously introduced and drop them from 
the pool of active restrictions. The present ap-
proach is particularly motivated by the work of 
Lasdon et al. (2010), where a simplified instance 
of such strategies was found to be effective for 
improving the solution of certain constrained 
non-convex nonlinear continuous problems.

In the present paper we likewise assume 
the objective function of (P) is non-convex 
(hence a local optimum may not be a global 
optimum), and allow for non-convexity in the 
constraints. We also allow for the presence of 
integer restrictions on some of the problem 
variables under the provision that such variables 
are treated by means of constraints or objective 
function terms that permit them to be treated 
as if continuous within the nonlinear setting. 
In the case of zero-one variables, for example, 
a concave function such as xj(1 – xj) may be 
used that is 0 when xj = 0 or 1, and is positive 
otherwise. See Bowman and Glover (1972) for 
additional examples.

We make recourse to an independent algo-
rithm to generate trial solutions to be evaluated 
as candidates for a global optimum, where as 
customary the best feasible candidate is retained 
as the overall “winner”. The independent algo-
rithm can consist of a directional search (based 
on gradients or related evaluations) as in Lasdon 
et al. (2010), or may be a “black box” algorithm 

as used in simulation optimization as in April 
et al. (2006) and Better et al. (2007).

2. PSEUDO-CUT FORM 
AND REPRESENTATION

Our pseudo-cut strategy is based on generat-
ing hyperplanes that are orthogonal to selected 
rays (half-lines) originating at a point x′ and 
passing through a second point x″, so that the 
hyperplane intersects the ray at a point xo de-
termined by requiring that it lies on the ray at a 
selected distance d from x′. The half-space that 
forms the pseudo-cut is then produced by the 
associated inequality that excludes x′ from the 
admissible half-space. We define the distance 
d by reference to the Euclidean (L2) norm, but 
other norms can also be used.

To identify the pseudo-cut as a function of 
x′, x″ and d, we represent the ray that originates 
at x′ and passes through x″ by

. 	 (1)

(Hence x′ and x″ lie on the ray at the points	  
determined by λ = 0 and 1, respectively.)	

A hyperplane orthogonal to this line may 
then be expressed as.

ax = b 	 (2.1)

where

a = (x″ – x′) 	 (2.2)

b = an arbitrary constant 	 (2.3)

The specific hyperplane that contains a 
given point xo on the ray (1) results by choosing

b = axo. 	 (2.4)

To identify the point xo that lies on the ray 
(1) at a distance d from x′, we seek a value λ = 
λo that solves the equation
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d(x′, xo) = x′ – xo = d 	 (3.1)

where

. 	 (3.2)

Consequently, by the use of (3.2) the desired 
value of λo is obtained by solving the equation

 	 (3.3).

For the value of λo and the hyperplane 
thus determined, the associated half-space that 
excludes x″ (and x′) is then given by

ax ≥ axo. 	 (4)

3. PSEUDO-CUT STRATEGY

We make use of the pseudo-cut (4) within a 
2-stage process. In the first stage x′ represents 
a point that is used to initiate a current search 
by the independent algorithm, and x″ is the 
point obtained at the conclusion of this search 
phase (e.g., x″ may be a local optimum). The 
distance d is then selected so that xo lies a speci-
fied distance beyond x″.

In the second stage we take x′ to be the point 
x″ identified in the first stage, and determine x″ 
by applying the independent algorithm to the 
problem that results after adding the pseudo-
cut generated in the first stage. In this case d 
is chosen so that xo lies between x′ and x″ at a 
selected distance from x′.

The value of d in both of these cases may 
be expressed as a multiple m of the distance 
between the points currently denoted as x′ and 
x″, i.e.

d = mx″ – x′ 	 (5)

The multiple m is selected to be greater 
than 1 in the first stage and less than 1 in the 
second. Because the points x′ and x″ change 
their identities in the two stages, it is convenient 
to refer to the points generated in these stages 

by designating them as P0, P1, Q1, etc., as a 
basis for the following description (We later 
identify additional variations based on choosing 
d, x′ and x″ in different ways). The pseudo-cut 
pool (or simply cut pool) refers to all pseudo-
cuts previously added that have not yet been 
discarded. The pool begins empty.

Together with the statement of the Pseudo-
Cut Generation Procedure, we include paren-
thetical remarks, underlined and in italics, that 
identify specific accompanying diagrams to 
illustrate some of the key steps of the procedure.

Pseudo-Cut Generation 
Procedure (A Complete Pseudo-
Code for this Procedure 
Appears in the Appendix)

Stage 1:
(1.1) Let x′ = P0 denote a starting point for the 

independent algorithm, let
	 x″ = P1 denote the best point obtained 

during the current execution of the
	 algorithm, and let xo = Q1 be the point 

determined by (3) upon selecting
	 a value m > 1 in (5) (see Note 1). If xo 

violates any pseudo-cut
	 contained in the cut pool, remove this cut 

from the pool.
(1.2) Add the pseudo-cut (4) to the cut pool and 

apply the independent
	 algorithm starting from the point Q1. Let 

Q2 denote the best point of the
	 current execution. If Q2 = Q1, then increase 

the value of m to determine
	 a new Q1 by (3) that replaces the previous 

cut that was generated for a
	 smaller m value, and then repeat step (1.2) 

(without increasing an
	 iteration counter). Otherwise, if Q2 differs 

from Q1, proceed to step.
(1.3) (see Note 2).
(1.3) If Q2 does not lie on the hyperplane ax = 

axo associated with the current
	 pseudo-cut (4) then redefine P0 = Q1, P1 

= Q2, and return to step (1.1).
	 (Figure 1 shows this case and Figure 2 

shows this case after
	 returning to step (1.1).)
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	 Otherwise, if Q2 lies on ax = axo, then 
proceed to Stage 2 (see Note 3).

	 (Figure 3 shows this case.)
Stage 2:
(2.1) Remove the pseudo-cut (4) just added in 

step (1.2) and replace it with a new one 
determined as follows. Let x′ = P1 and x″ 
= Q2, and determine a point xo = R1 by (3) 
and (5), where m is chosen to satisfy1 > 
m > 0. (See Note 4 for choosing m large 
enough but less than 1.) If xo violates any 
pseudo-cut contained in the cut pool, re-
move this cut from the pool.

(2.2) Add the new pseudo-cut (4) to the cut pool 
and apply the independent

	 algorithm starting from the point R1. Let 
R2 denote the best point of the

	 current execution. (a) If R2 = R1, then 
redefine P0 = Q1, P1 = Q2.Otherwise, 
(b) if R2 ≠ R1 (Diagram 2.1shows this 
case), then whether or not R2 lies on the 
cut hyperplane, redefine P0 = P1 and P1 = 
R2. In either case (a) or (b), return to step 
(1.1) of Stage 1 (see Note 5). (Diagram 
2.1.1shows this case, inherited from (b), 
while Figure 6 shows the case inherited 
from (a). Both of these two diagrams also 
show the new P0, P1 and Q1, and the new 
pseudo-cut produced at step (1.1).)

We observe that each time the method returns 
to step (1.1) in the Pseudo-Cut Generation 

Procedure, whether from step (1.3) or step (2.2), 
the current designation of P0 and P1 is compat-
ible with the original designation, i.e., P0 always 
represents a point that has been used to start 
the independent algorithm and P1 represents 
the resulting best solution found on the current 
(most recent) execution of the algorithm.

We also remark that when the method 
specifies that the independent algorithm should 
start from Q1 in step (1.2) or from R1 in step 
(2.2), it may be preferable to start the method 
from a point slightly beyond this intersection 
with the current pseudo-cut hyperplane, to avoid 
numerical difficulties that sometimes arise in 
certain nonlinear methods if starting solutions 
are selected too close to the boundaries of the 
feasible region.

Illustrative Diagrams

The diagrams in Figures 1 through 6 illustrate 
several main components of the procedure.

A Rule for Dropping Pseudo-Cuts: We 
allow for pseudo-cuts to be dropped (removed 
from the cut pool) by a rule that goes beyond 
the simple provision for dropping cuts already 
specified in the algorithm. We consider the 
pseudo-cuts to have the same character as tabu 
restrictions that are monitored and updated in 
the short term memory of tabu search. We 
propose the use of two tabu tenures t1 and t2 for 
using such memory, where t1 is relatively small 

Figure 1. Stage 1: Q2 not on hyperplane
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(e.g., 1 ≤ t1 ≤ 5) and t2 is selected to be larger 
(e.g., 7 ≤ t2 ≤ 20). (The indicated ranges are for 
illustrative purposes only.) Each pseudo-cut not 
dropped by the instructions stipulated in the 
algorithm will be retained for t1 iterations (ex-
ecutions of step (1.1)) after the cut is created, 
and then dropped after this number of iterations 
whenever the cut becomes non-binding (the 
current solution x” produced by the independent 
algorithm does not lie on the cut hyperplane). 
However, on any iteration when no cut is 
dropped (either directly by the algorithm or by 
this rule), a second rule is applied by consider-
ing the set of all cuts that have been retained 
for at least t2 iterations. If this set is non-empty, 

we drop oldest cut from it (the one that has been 
retained for the greatest number of iterations).

The following additional observations are 
relevant.

Note 1. The values chosen for m are a key ele-
ment of the cut generation strategy in its 
present variation, and will depend on such 
things as the sizes of basins of attraction 
in the class of problem considered. Within 
step (1.1), m may be chosen to be a selected 
default fraction greater than 1, but bounded 
from below by a value that assures xo will 
lie a certain minimum distance beyond x”.

Note 2. To avoid numerical problems, it is 
appropriate to require that Q2 differ from 

Figure 2. New state 1: start over

Figure 3. Stage 1: Q2 on hyperplane
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Q1 by a specified amount in step (1.2) in 
order to be considered “not equal” to Q1. 
Also, the increase in the value of m in 
step (1.2) can be chosen either as a default 
percentage increase or as an amount suf-
ficient to assure that d grows by a specified 
value independent of this percentage. This 
value of m drops back to its original value 
whenever the method re-visits step (1.1), 
but if a succession of increases in step (1.2) 
causes the distance separating Q1 from P1 
to exceed a specified threshold (anticipated 
to render all feasible solutions for the 
original problem inadmissible relative to 
the pseudo-cut (4) at step (1.2)), then the 

procedure may be terminated or re-started 
from scratch from a new initial starting 
solution x′ = P0 produced by a multi-start 
procedure, e.g., as described in Ugray et 
al. (2009).

Note 3. In step (3.3) we require the point Q2 
to lie a certain minimum distance from 
the hyperplane ax = axo in order to be 
considered as not lying on the hyperplane.

Note 4. The value of m in step (2.1) is assumed 
to be chosen to prevent the point Q1 from 
satisfying the pseudo-cut (4) produced in 
step (2.2). It suffices to choose m so that the 
distance of R1 from P1 is as least as great as 
the distance of Q1 from P1. (If this distance 

Figure 4. Stage 2: Q2 on stage 1 hyperplane, R2 ≠ R1

Figure 5. New stage 1: start over
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is the same, then R1 and Q1 will lie on a 
common hyper-sphere whose center is P1, 
and the pseudo-cut (4) of (2.2) is produced 
by a tangent to this hyper-sphere).

Note 5. An interesting possible variation in Step 
(2.2) that reduces the number of pseudo-
cuts maintained, and hence constrains 
the search space less restrictively, is to 
drop the latest pseudo-cut (4) (that led to 
determining R2) before returning to (1.1) 
to generate the new pseudo-cut. (The cut 
thus dropped is not immediately relevant 
to the next step of the search in any event.) 
Another variation is to make sure that d is 
large enough to render the most recent Q2 
infeasible relative to the pseudo-cut. This 
variation will avoid cases where sometimes 
Q2 may be revisited as a local optimum 
(The procedure may be monitored to see 
if multiple visits to the same Q2 point oc-
cur, as a basis for deciding if the indicated 
variation is relevant).

Finally, we observe that a simplified version 
of the Pseudo-Cut Generation Procedure can 
be applied that consists solely of Stage 1, with 
the stipulation in step (1.3) that the pseudo-cut 
(4) is generated and the method returns to (1.1) 
in all cases.

4. DETERMINATION OF 
THE DISTANCE D BY 
EXPLOITING QUICK 
OBJECTIVE FUNCTION AND 
DIRECTIONAL EVALUATIONS

In a context where a computational method 
exists that can relatively quickly calculate the 
objective function value for the point xo, and in 
addition can fairly quickly calculate whether a 
given direction is an improving direction, the 
value of d that determines xo can be determined 
implicitly rather than explicitly.

This is done by generating a number of 
successively larger candidate values for the 
scalar weight λo, starting from λo > 1 for Step 
(1.1) of the Pseudo-Cut Generation Procedure, 
and starting from λo > 0 otherwise. For each 
candidate value of λo, we then check whether 
one or more of the following conditions hold 
for the associated xo vector (It is assumed that 
terms like feasible improving direction and 
stronger improving direction are understood 
and need not be defined).

Condition 1(a). There exists a feasible improv-
ing direction from xo that lies in the region 
satisfying the pseudo-cut (4).

Condition 1(b). The direction from xo on the ray 
for λ > λo is a feasible improving direction.

 

drop this hyperplane

Stage 2
(followed by new Stage 1, R2 = R1)

P0 (new)
x’
Q1 (old)

Q1 (new)
x0

P1 (new)
x’’

Q2 (old)

R2 = R1

Figure 6. Stage 2: followed by new stage 1, R2 = R1
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Condition 2(a). The improving direction from 
Condition 1 (for a given choice of 1(a) or 
1(b)) is stronger than any feasible improv-
ing direction that does not lie in the region 
satisfying the pseudo-cut (4).

Condition 2(b). The improving direction from 
Condition 1 (for a given choice of 1(a) or 
1(b)) is stronger than the direction from xo 
on the ray for λ < λo (automatically satis-
fied the latter is not a feasible improving 
direction).

The conditions 1(b) and 2(b) are more 
restrictive than 1(a) and 2(a), respectively, but 
are easier to check. Condition 2 is evidently 
more restrictive than Condition 1.

For a selected condition, we then choose the 
first (smallest) candidate λo value (and associ-
ated xo) for which the condition is satisfied. This 
choice then indirectly determines the distance d.

5. CHOOSING THE 
POINTS X′ AND X″

We have previously indicated that x′ is custom-
arily chosen as a point that initiates the search 
of the independent algorithm, and x″ denotes 
the best point determined on the current pass of 
the algorithm, as where x″ may denote a local 
optimum. We now consider other choices that 
can be preferable under various circumstances.

It is possible, for example, that an effort 
to determine a point xo according to Condition 
1 or 2 of the preceding section will not be able 
to identify a feasible point that qualifies. In this 
case, it may be preferable to reverse the roles 
of x′ and x″ to seek a qualifying xo on the ray 
leading in the opposite direction. Moreover, it 
may be worthwhile to examine the option of 
reversing the roles of x′ and x″ in any event, 
where the ultimate choice of which point quali-
fies as x′ will depend on the evaluation of the 
point xo that is generated for each case.

Still more generally, the collection of can-
didate points from whose members a particular 
pair of points x′ and x″ will be chosen can be 
generated by a variety of considerations, includ-

ing those used in composing a Reference Set in 
Scatter Search (see, for example, Glover, La-
guna, & Marti, 2000; Marti, Glover, & Laguna, 
2006). Likewise the criteria for selecting x′ and 
x″ from such a collection can also incorporate 
criteria from Scatter Search. Here, however, we 
suggest three alternative criteria.

Criterion 1. Let x′(i) and x″(i), i = 1,…,i*, iden-
tify the points used to determine previous 
pseudo-cuts (i.e., those successfully gener-
ated and introduced at some point during the 
search). Let x*(i) identify the point on the 
ray from x′(i) through x″(i) that lies a unit 
distance from x′(i). Finally for a candidate 
pair of points x′ and x″, let x* denote the 
point on the ray from x′ through x″ that 
lies a unit distance from x′. From among 
the current pairs x′ and x″, we select the 
one such that x* maximizes the minimum 
distance from the points x*(i), i = 1,…,i*.

Criterion 2. Choose the candidate pair x′ and x″ 
by the same rule used in Criterion 1, except 
that x*(i) is replaced by the point xo(i) (the 
“xo point” previously determined from x′(i) 
and x″(i)), and x* is likewise replaced by 
the point xo determined from the currently 
considered x′ and x″.

Criterion 2 allows for the possibility that x′ and 
x″ may lie on the same ray as generated 
by some pair x′(i) and x″(i), provided the 
point xo lies sufficiently distant from the 
point xo(i). This suggests the following 
additional criterion.

Criterion 3. Employ Criterion 1 unless the 
minimum distance of the selected point 
x* from the points x*(i), i = 1,…,i* falls 
below a specified threshold, in which case 
employ Criterion 2.

A variant on Criterion 3 is to employ Cri-
terion 1 except where the minimum distance 
determined from Criterion 2 exceeds a certain 
lower bound, where this latter may be expressed 
in terms of the minimum distance obtained for 
Criterion 1.



International Journal of Applied Metaheuristic Computing, 2(4), 1-12, October-December 2011   9

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6. ADDITIONAL 
CONSIDERATIONS 
FOR CHOOSING XO

To this point we have assumed that xo will lie 
beyond x″ on the ray leading from x′ through 
x″, on each execution of Step (1.1) of the 
Pseudo-Cut Generation Procedure. However, 
in some case, as in the customary application 
of Scatter Search, it may be preferable to select 
a point xo that lies between x′ and x″. We add 
this possibility as follows.

First, we stipulate that the candidate values 
for λo lie in the interval 0 < λo < 1. Second, we 
apply Condition 1 or Condition 2 (in either the 
(a) or (b) form)) to determine a value λo

min which 
is the least λo value that satisfies the condition 
(assuming such a value exists in the interval 
in the interval 0 < λo < 1). Next, we examine 
the candidate λo values in the reverse direction 
(from larger to smaller) in the interval λo

min < λo 
< 1, and choose one of the following Reverse 
Conditions as a basis for choosing a particular 
candidate value.

Reverse Condition 1(a). There exists a feasible 
improving direction from xo that lies in the 
region not satisfying the pseudo-cut (4).

Reverse Condition 1(b). The direction from xo 
on the ray for λ < λo is a feasible improv-
ing direction.

Reverse Condition 2(a). The improving direc-
tion from Reverse Condition 1 (for a given 
choice of 1(a) or 1(b)) is stronger than any 
feasible improving direction that lies in the 
region satisfying the pseudo-cut (4).

Reverse Condition 2(b). The improving direc-
tion from Reverse Condition 1 (for a given 
choice of 1(a) or 1(b)) is stronger than 
the direction from xo on the ray for λ > λo 
(automatically satisfied if the latter is not 
a feasible improving direction).

Finally, we identify the first (largest) λo 
candidate value satisfying the selected Reverse 
Condition, denoted by λo

max (provided such 
a value exists in the indicated interval), and 
choose λo = (λo

min + λo
max)/2. This final λo value 

is the one used to find a point strictly between 
between x′ and x″ from which to launch a new 
search. This search can optionally be constrained 
by adding a pseudo-cut (4) for xo determined 
from λo = λo

min (or from a “reverse” pseudo-cut 
determined from λo = λo

max).
From among the various candidate values xo 

identified for launching a new search as above, 
and also from among those that may be identi-
fied from applying Condition 1 or 2 for λo > 
1 (allowing x′ and x″ to be interchanged), one 
may ultimately choose the option such that xo 
receives a highest evaluation. This evaluation 
can be in terms of objective function value (pos-
sibly considering directional improvement), or 
in terms of maximizing the minimum distance 
of xo from points in a Reference Set. By such a 
use of a Reference Set, the approach can foster 
diversity in conjunction with the search for im-
provement. In fact, the indicated strategies can 
be used to create rules for a version of Scatter 
Search that differs from more customary forms 
of the method.

It should be noted that these strategies for 
choosing xo vectors can be used without both-
ering to introduce pseudo-cuts. For example, 
such a strategy can be employed for some initial 
duration of search to produce xo trial solutions, 
and then the pseudo-cuts can subsequently be 
invoked to impose greater restrictiveness on 
the search process.

7. CONCLUSION

The proposed collection of pseudo-cut strategies 
for global optimization expands the options previ-
ously available for guiding solution processes for 
non-convex nonlinear optimization algorithms. 
These strategies can be used to supplement other 
approaches for solving such problems, or can be 
used by themselves. The mechanisms proposed 
for generating trial solutions can similarly be 
used in a variety of ways, and may even be used 
independently of the pseudo-cuts themselves. 
The demonstration that an exceedingly simplified 
instance of a pseudo-cut strategy succeeded in 
enhancing a non-convex optimization method 
in Lasdon et al. (2010) suggests the potential 
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value of more advanced pseudo-cut strategies 
as described here, and of empirical studies 
for determining which combinations of these 
strategies will prove most effective in practice. 
The use of pseudo-cuts reinforces the theme of 
joining mathematically based exact methods for 
convex problems with special strategies capable 
of modifying these methods to enable them to 
solve non-convex problems. In this guise, the 
proposals of this paper offer a chance to create a 
wide range of new hybrid algorithms that marry 
exact and metaheuristic procedures.

REFERENCES

April, J., Better, M., Glover, F., Kelly, J., & Laguna, 
M. (2006). Enhancing business process management 
with simulation-optimization. In Proceedings of the 
Winter Simulation Conference (pp. 642-649).

Better, M., Glover, F., & Laguna, M. (2007). 
Advances in Analytics: Integrating dynamic data 
mining with simulation optimization. IBM Journal 
of Research and Development, 51(3-4), 477–487. 
doi:10.1147/rd.513.0477

Bowman, V. J., & Glover, F. (1972). A note on 
zero-one integer and concave programming. Op-
erations Research, 20(1), 182–183. doi:10.1287/
opre.20.1.182

Glover, F. (1989). Tabu Search - Part I. ORSA Journal 
on Computing, 1(3), 190–206.

Glover, F., Laguna, M., & Marti, R. (2000). Funda-
mentals of scatter search and path relinking. Control 
and Cybernetics, 29(3), 653–684.

Lasdon, L., Duarte, A., Glover, F., Laguna, M., & 
Marti, R. (2010). Adaptive memory programming 
for constrained global optimization. Computers & 
Operations Research, 37, 1500–1509. doi:10.1016/j.
cor.2009.11.006

Martí, R., Glover, F., & Laguna, M. (2006). Prin-
ciples of scatter search. European Journal of Op-
erational Research, 169, 359–372. doi:10.1016/j.
ejor.2004.08.004

Ugray, Z., Lasdon, L., Plummer, J., & Bussieck, M. 
(2009). Dynamic filters and randomized drivers for 
the multi-start global optimization algorithm MSNLP. 
Optimization Methods and Software, 24, 635–656. 
doi:10.1080/10556780902912389

Fred Glover is the Chief Technology Officer in charge of algorithmic design and strategic planning 
initiatives for OptTek Systems, Inc., and holds the title of Distinguished Professor, Emeritus, at the 
University of Colorado, Boulder. He has authored or co-authored more than 400 published articles 
and eight books in the fields of mathematical optimization, computer science and artificial intelligence, 
and is the originator of the optimization search procedure called Tabu Search (Adaptive Memory 
Programming), for which Google returns more than a million results. Fred Glover is the recipient of 
the von Neumann Theory Prize, the highest honor of the INFORMS society, and is an elected member 
of the U. S. National Academy of Engineering. His numerous other awards and honorary fellowships 
include those from the AAAS, the NATO Division of Scientific Affairs, INFORMS, DSI, USDCA, ERI, 
AACSB, Alpha Iota Delta and the Miller Institute for Basic Research in Science. 

Leon Lasdon received his PhD in Systems Engineering from Case Institute of Technology in 1964.  
He taught in the Operations Research Department at Case from 1964 to 1977, when he joined the 
McCombs School of Business at The University of Texas at Austin. He holds the David Bruton Jr. 
Chair in Business Decision Support Systems in the Information, Risk, and Operations Management  
Department. Prof. Lasdon is an active contributor to nonlinear programming algorithms and soft-
ware.  He is co-author (with Dan Fylstra) of the Microsoft Excel Solver. His OQNLP and MSNLP 
multistart solvers for smooth nonconvex optimization are available within GAMS and TOMLAB.  
His LSGRG2 nonlinear optimizer is available within the Frontline Systems Premium Excel Solver 
and the multistart systems, and is also widely used in process control. He is the author or co-author 
of over 120 refereed journal articles and three books.  Recent papers are available at www.utexas.
edu/courses/lasdon (link to “papers”).



International Journal of Applied Metaheuristic Computing, 2(4), 1-12, October-December 2011   11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

John Plummer is Senior Lecturer of Quantitative Methods in the McCoy College of Business, De-
partment of Computer Information Systems and Quantitative Methods at Texas State University, San 
Marcos Texas.  He received his PhD degree from the Business School, University of Texas at Austin 
in 1984, with earlier MBA and BS in Chemical Engineering degrees from Texas A&M.  His research 
interests include implementation and refinement of nonlinear programming algorithms and software, 
interfaces to algebraic modeling systems, and multi-start heuristics for global optimization. He is 
co-author of the OQNLP and MSNLP multistart Solvers included in the GAMS modeling language.

Abraham Duarte is an Associate Professor in the Computer Science Department at the Rey Juan 
Carlos University (Madrid, Spain). He received his doctoral degree in Computer Sciences from 
the Rey Juan Carlos University. His research is devoted to the development of models and solution 
methods based on meta-heuristics for combinatorial optimization and decision problems under 
uncertainty. He has published more than 30 papers in prestigious scientific journals and conference 
proceedings such as European Journal of Operational Research, INFORMS Journal on Computing, 
Computational Optimization and Applications or Computers & Operations Research. Dr Duarte is 
reviewer of the Journal of Heuristic, Journal of Mathematical Modeling and Algorithms, INFORMS 
Journal on Computing, Applied Soft Computing, European Journal of Operational Research and Soft 
Computing. He is also member of the program committee of the conferences MAEB, HIS, ISDA or 
MHIPL.

Rafael Martí is Professor in the Statistics and Operations Research Department at the University of 
Valencia, Spain. His teaching includes courses on Operations Management in Business, Statistics 
in Social Sciences, Mathematical Programming for Math majors and Management Science at the 
Masters and Doctoral level. His research interest focuses on the development of metaheuristics for 
hard optimization problems. He is co-author of several books (e.g., "Scatter Search" Kluwer 2003 
and "The Linear Ordering Problem" Springer 2010) and is currently Area Editor in the Journal of 
Heuristics and Associate Editor in the Mathematical  Programming Computation and the International 
Journal of Metaheuristics; he has published more than 50 JCR-indexed journal papers.

Manuel Laguna is the MediaOneProfessor of ManagementScience atthe Leeds School of Business 
of the University of Colorado Boulder. He started his career at the University of Colorado in 1990, 
after receivingmaster’s (1987) and doctoral (1990) degrees in Operations Research and Industrial 
Engineering from the University of Texas at Austin.  He has done extensive research in the interface 
between computer science, artificial intelligence and operations research to develop solution methods 
for practical problems in operations-management areas such as logistics and supply chains, telecom-
munications, decision-making under uncertainty and optimization of simulated systems.  Dr. Laguna 
has more than one hundred publications, including more than sixty articles in academic journals 
and four books. He is Editor-in-Chief of the Journal of Heuristics, is in the international advisory 
board of the Journal of the Operational Research Society and has been guest editor of the Annals of 
Operations Research and the European Journal of Operational Research. 

Cesar Rego is a Professor at the School of Business of the University of Mississippi. He received a 
MSc in Operations Research and Systems Engineering from the School of Technology of the University 
of Lisbon, and a PhD in Computer Science from the University of Versailles. His research focuses on 
mathematical optimization, computer science, and artificial intelligence. Dr. Rego’s  innovations in 
the field of metaheuristics include the invention of the Relaxation Adaptive Memory Programming 
(RAMP) approach for solving complex optimization problems.



12   International Journal of Applied Metaheuristic Computing, 2(4), 1-12, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX

Figure 7. Pseudo-code for the Pseudo-Cut Method (initial simplified version)


