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Abstract We examine a prominent and widely-studied model of the protein folding prob-
lem, the two-dimensional (2D) HP model, by means of a filter-and-fan (F&F) solution ap-
proach. Our method is designed to generate compound moves that explore the solution space
in a dynamic and adaptive fashion. Computational results for standard sets of benchmark
problems show that the F&F algorithm is highly competitive with the current leading algo-
rithms, requiring only a single solution trial to obtain best known solutions to all problems
tested, in contrast to a hundred or more trials required in the typical case to evaluate the
performance of the best of the alternative methods.

Keywords Metaheuristics · Tabu search · Compound neighborhoods · Filter-and-fan ·
Protein folding · Bioinformatics

1 Introduction

A protein is a linear polymer molecule that may consist of thousands of monomer units.
The monomers are the 20 known amino acids. The typical length of a protein chain ranges
from 50 to 1000 amino acids. In the natural environment a protein adopts a specific tertiary
structure called a conformation. There are essentially three types of proteins existing in
nature: fibrous, membrane and globular. Most studies on protein structure prediction have
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focused on globular proteins due to the fact that, unlike the other two, a globular protein
exhibits an extremely compact and unique conformation in its native state (Chan and Dill
1993). The native state of a protein is often thermodynamically stable, which means that it
is associated with a global minimal Gibbs free energy. Also, it is well established that the
amino acid sequence is a major factor in determining the folding conformation of a protein
(Anfinsen et al. 1961). Other factors such as enzymes catalyze the folding process but do not
play a determinant role as the amino acid sequence does in yielding the structure ultimately
attained (Richards 1991).

The Protein Folding Problem (PFP) is the problem of predicting the three-dimensional
(3D) structure of a protein given only the protein’s sequence of amino acids. This is a fun-
damental yet open problem in the fields of biological chemistry and protein science, and has
attracted attention in the areas of bioinformatics and computational biology. Understanding
and predicting the native conformation of a protein is of both theoretical and practical im-
portance. A protein’s function is closely related to its 3D structure, and therefore one can
determine how a protein functions by predicting its 3D conformation. Now that the Human
Genome Project has mapped the complete human genome sequence (represented by over 3
billion DNA subunits), advanced bio-computing models and techniques are crucial for in-
terpreting human gene functions and so proteins. The PFP is central in a number of practical
applications including the designing of new proteins having desirable functions in pharma-
ceutical, food, and agriculture industry (Lengauer 1993). We refer to Richards (1991) and
Chan and Dill (1993) for an overview of the PFP and its applications.

The PFP is a notoriously difficult combinatorial problem due to the combinatorial ex-
plosion of valid conformations as the number of amino acids in the chain increases. It has
been estimated that using current computer technologies, finding all possible conformations
for a 100-aminoacid protein would require 1027 years of computer processing (Krasnogor
et al. 1998), a length of time that is more than a thousand billion times the age of the uni-
verse. Notably the PFP has been identified as a National Grand Challenge in biochemistry
(Committee on Physical, Mathematical and Engineering Science 1992) in the U.S. Even in
its simplified version of the lattice HP model (Dill 1985), the PFP has been proved to be
NP-complete (Crescenzi et al. 1998) and therefore no polynomial algorithm is available for
its solution (and theoretically none can exist unless P = NP).

Two experimental methods of determining the protein structure are X-ray crystallography
and Nuclear Magnetic Resonance (NMR). Most of the structural information in the Protein
Data Bank (PDB) is obtained through these two approaches (Berman et al. 2000). A draw-
back of these methods is that they are exceedingly expensive in their demands on equipment
and processing time. Bioinformatics supported by advanced optimization models and tech-
niques provides an alternative approach with the potential to predict the native structure of
proteins in a much more cost-effective manner. Since current exact solution methods are
unable to solve even the smallest instances of the PDB, effective heuristic (approximation)
algorithms are required to find optimal or near-optimal conformations. Also, due to the com-
plex nature of the PFP, the so-called HP lattice model proposed by Dill (1985) constitutes a
well established simplification for algorithm assessment.

This paper considers the two-dimensional (2D) version of the HP lattice model and pro-
poses a new algorithm for the solution of the associated PFP. The key contribution is the
development of an effective mechanism for adapting simple neighborhood structures to en-
able them to explore the solution space more effectively. The approach is based on a filter-
and-fan procedure that augments a simple neighborhood in a dynamic and adaptive fashion
using a truncated form of tree search. Computational testing carried out on the standard
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benchmarks and Functional Model Proteins (FMP) testbeds demonstrates the competitive-
ness of the proposed filter-and-fan algorithm relative to alternative approaches in the liter-
ature. The remainder of the paper is organized as follows. Section 2 introduces the 2D HP
lattice model and Sect. 3 develops the filter-and-fan algorithm. Computational results are
presented in Sect. 4, followed by a summary of conclusions and a discussion of promising
avenues for future research in Sect. 5.

2 The 2D HP model

The HP lattice model (Dill 1985) is the most widely studied protein folding model. Although
relatively simple the model captures many global aspects of protein structure (Chan and Dill
1993). The lattice serves as a tool to discretize the conformational space in real-world pro-
tein folding, while allowing freedom of the chain to have different backbone conformations.
As discussed by Lau and Dill (1989), the lattice model provides a way to explore the nature
of the full conformational and sequence spaces of proteins. The model additionally helps
to answer fundamental questions about the conformation space of real proteins such as its
(landscape) structure, the density of native states with lowest energy, the local minima dis-
tribution and their correlation to reaching a compact globular state with a hydrophobic core.
Under the assumption that the hydrophobic interaction is the dominant force in protein fold-
ing, the model considers two types of amino acids: hydrophobic monomers (denoted by H),
which are oil-like and interact poorly with water, and hydrophilic (or polar, denoted by P),
which interact favorably with water. A sequence of H and P amino acids is configured as a
path on a two-dimensional (2D) square lattice to define a valid conformation. The path des-
ignation implies that the conformation is both connected and self-avoiding, i.e., no amino
acids can collide in the same cell of the lattice. (In graph theory terminology, such a path is
called node simple.) The energy function is defined by the number of pairs of H nodes that
are adjacent in the lattice and not consecutive in the chain. Each of these pairs, generally
called an H–H contact, decreases the energy value by one unit and all the other contacts
have zero contribution. The energy interaction in the Functional Model Proteins (FMP, Hirst
1999) while considering repulsive forces is different: an H–H contact has an energy contri-
bution of −2 and all the other contacts contribute +1 to the energy value to be minimized.
The objective is to find a conformation that minimizes the total energy of the given amino
acid sequence, which therefore corresponds to maximizing the number of H–H contacts.

Figure 1 illustrates a protein with seven hydrophobic (H) and two hydrophilic (P)
monomers represented by black and white nodes, respectively. Nodes 1 and 9 denote the
two terminal nodes in the chain.

In the native state of globular proteins, the polar monomers tend to reside on the surface
attached to water molecules, while the lack of favorable interaction between polar residues
and solvent (water) drives the hydrophobic residues into the core.

Fig. 1 An HP lattice model of protein with 7 hydrophobic (H) and 2 hydrophilic (P) monomers
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Various computational approaches have been proposed to tackle this simplified yet NP-
complete combinatorial problem. Notable approximation algorithms include chain growth
algorithms by Hart and Istrail (1996, 1997) and Bornberg-Bauer (1997). Better computa-
tional results have been found by metaheuristic algorithms. Evolutionary algorithms include
Genetic Algorithms (GA) by Unger and Moult (1993), Dandekar and Argos (1994), Krasno-
gor et al. (1999), and Konig and Dandekar (1999), Memetic Algorithm by Krasnogor et al.
(2002) and Pelta and Krasnogor (2004), and Immune Algorithm by Cutello et al. (2005,
2006). Classical Monte Carlo Simulation (MC) approaches were first developed by Cov-
ell and Jernigan (1990) and Skolnick and Kolinski (1990). More recently, variants of the
MC approach have been introduced in the Pruned Enriched Rosenbluth Method (PERM) by
Grassberger (1997), and Hsu et al. (2003a, 2003b), the dynamic Monte Carlo algorithm by
Ramakrishnan et al. (1997), the evolutionary Monte Carlo (EMC) algorithm by Liang and
Wong (2001) and the Multi-Self-Overlap-Ensemble (MSOE) by Chikenji et al. (1999). Lesh
et al. (2003) apply a randomized multi-start Tabu Search algorithm that obtains several best
results for the standard 2D HP benchmark problems. A hybrid approach combining tabu
search and genetic algorithm is proposed by Jiang et al. (2003). Shmygelska et al. (2002)
Shmygelska and Hoos (2003, 2005) propose an Ant Colony Optimization algorithm and re-
port satisfying results. Other approaches include Constraint Programming (CP) by Backofen
(2001).

3 The filter-and-fan algorithm

Generally speaking, the success of a metaheuristic algorithm is driven by two fundamental
components, the neighborhood structure used for the local search and the strategy to guide
the search beyond local optimality. Depending on the size and difficulty of the problem,
different levels of sophistication may be required for each of these components. In general,
large scale problems require highly effective neighborhood structures to generate moves
that are capable of exploring large neighborhood spaces. A special class of such neighbor-
hoods is represented by the so-called ejection chain methods, which are chiefly designed
to explore exponential neighborhoods in polynomial time (see Glover 1992, 1996a, 1996b,
and Rego and Glover 2002). Although very powerful, ejection chain methods are typically
more complex than other more traditional neighborhood designs. In cases where ejection
chain approaches are not available or the problem size is not exceedingly large, simpler
neighborhoods accompanied by appropriate search guidance may be adequate. We pursue
the approach of seeking an effective guidance strategy within a simpler neighborhood by ex-
tending the so-called pull-move neighborhood (Lesh et al. 2003) by means of a filter-and-fan
method. The idea of pull-moves also shares some similarities with the work of Nunes et al.
(1996). To elaborate the algorithm we first describe the pull-move neighborhood structure.

3.1 The pull-move neighborhood

A filter and fan algorithm requires the definition of component moves used to generate trial
solutions throughout the search process. Component moves are characteristically simple
moves serving as building blocks for the construction of an extended filter and fan neighbor-
hood. We make use of component moves defined by the pull-move neighborhood introduced
in the tabu search implementation of Lesh et al. (2003). A pull-move is initiated by moving
one node of the current conformation to its empty diagonal adjacent position in the square
induced by the node and its neighbor(s) in the sequence. Depending on the structure of the
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Fig. 2 Pull move—filling

Fig. 3 Pull move—single-pull

conformation the displacement of the initiating node may require other nodes to change
their current positions in order to preserve connectivity. In a pull-move, displaced nodes are
only allowed to occupy vacant adjacent positions in the lattice. Consequently, the preserva-
tion of connectivity also results in a self-avoiding path. We differentiate only three types of
pull-moves designated by filling, single-pull and multiple-pull, according to the number of
nodes that are pulled by the first displaced node. Figures 2, 3 and 4 provide an illustration of
each type of these moves and associated reference structures. To simplify the notation in the
following, we allow labels be attached to the nodes that denote both the name of the node
and its position in the lattice.

The filling move is the simplest pull-move, displacing a single node in the structure. As
shown in Fig. 2, a valid conformation is obtained by simply moving node A to its diagonal
adjacent position (DA). The filling move is also known as the “corner move” (Socci and
Onuchic 1994).

A single-pull requires the succeeding node move to the remaining corner of the square af-
ter the initial move. Consider the conformation shown on left side of Fig. 3. Moving node A
to its adjacent diagonal position DA disconnects node B from node A as they are no longer
adjacent nodes in the lattice. However, a connected conformation can be obtained by moving
node B to position C, the remaining position in the square identified by the dotted lines.

The multiple-pull move extends the pull-move to achieve connectivity in more complex
structures that become disconnected upon performing a single-pull move. An illustration of
such type of structure is provided in Fig. 4.

The single-pull move represented by moving A to position DA and B to position D dis-
connects B from C. However, connectivity can be established by moving C to fill the position
vacated by A. If the latter move brings about a new disconnected structure the process is re-
peated until connectivity is achieved. A universal rule to implement a multiple-pull consists
of shifting successive nodes two positions ahead along the original chain until connectivity
is reached. In the example, node C (i.e. the successor of B) is shifted through position B and
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Fig. 4 Pull move—multiple-pull

then A in the original chain. Since at this point the structure is connected the process stops
and the move is completed.

It should be noted that the P nodes (shown in white) in the preceding illustrations could
just as well be H nodes. It may also be observed that even though the single-pull move of
Fig. 3 can be performed as a succession of two filling moves, this is not always the case
for general structures. Likewise, a single-pull move is not a special case of a multiple-pull
move. As it turns out, generalizations of these three types of moves, and of combinations of
them, are automatically generated by the method we describe next.

3.2 The filter and fan model and application

The filter and fan (F&F) method was initially proposed in Glover (1998) as a method for
refining solutions obtained by scatter search, and was further extended in Rego and Glover
(2002). In the latter, the method is proposed as an alternative to ejection chain methods and
as a means for creating combined neighborhood search strategies. Conceptually, it integrates
the filtration and the sequential fan candidate list strategies used in tabu search (Glover
and Laguna 1997), and can be viewed as a restrictive form of tabu search that generates
multiple paths in a breadth-first search strategy. From a neighborhood search perspective,
the method generates compound moves as a sequence of more elementary component moves
(or submoves).

Graphically, the F&F model can be illustrated by means of a neighborhood tree where
branches represent submoves and nodes identify solutions produced by these moves. An ex-
ception is made for the root node, which represents the starting solution to which compound
moves are to be applied. The maximum number of levels L permitted in a single sequence
of moves defines the depth of the tree. The neighborhood tree is explored breadth-first, level
by level. Each level is governed by the filter candidate list strategy that selects a subset of
moves induced by the fan candidate list strategy. The method incorporates two fundamen-
tal components: a local search to identify a local optimum and a filter and fan search to
explore larger neighborhoods in order to overcome local optimality. Any time a new local
optimum is found in one search strategy the method switches to the other strategy and keeps
alternating this way until the filter and fan search fails to improve the current best solution.

More advanced versions allow for the combination of different types of neighborhood
structures and the use of adaptive memory programming as introduced in tabu search. For
a detailed description of the method and the use of advanced strategies we refer to Glover
(1998) and Rego and Glover (2002). The filter and fan approach used in this study employs
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component moves identified by the pull-move neighborhood described in the previous sec-
tion. This neighborhood is likewise used in the local search phase. The algorithm is equipped
with a tabu search short-term memory aimed at enhancing the local search and providing the
tree search with appropriate legitimacy restrictions to drive the search and keep the method
from generating duplicated conformations.

3.2.1 The filter-and-fan construction

Our F&F search can be sketched as follows. Once a locally optimal solution Xo is found
(in the local search phase) the best η1 currently available moves (among the moves evalu-
ated to establish local optimality) are used to create the level 1 of the F&F neighborhood
tree. As a basis for creating the next levels, for a given level indexed by k, η1 denotes the
number of solutions that are chosen from all solutions available at level k, as a foundation
for generating solutions at level k + 1. (For k = 1, there are just η1 solutions available, so
all are chosen.) For each of these η1 solutions, denoted Xi(k) (i = 1, . . . , η1), we apply η2

moves to generate η2 descendant solutions, thereby generating a total of η = η1 × η2 trial
solutions for level k + 1. At this stage, η1 of the resulting η solutions are chosen to launch
the process for the next level. The values η1 and η2 are input parameters, e.g. η1 = 2η2. (In
more general versions of the approach, which we do not consider here, these parameters can
vary adaptively from one level of search to the next.) If an improved solution (better than
the local optimum Xo) is found among the trial solutions, then the method stops branching
and switches back to the local search phase, taking this newly improved solution as a start-
ing point. Otherwise, another selection takes place over the set of moves available and the
process repeats for a maximum of L levels. We found empirically that the performance of
the algorithm depends much more on the depth of the tree than its width, and that larger
values of η1 or η2 not always impact solution quality while it usually increases the running
times. Indeed, keeping η1 and η2 very small and increasing L to relatively large values ac-
cording to the problem size turned out to be the best compromise between solution quality
and running times. We consider η1 = η2 = 4 for all problems tested and L = 10000, 20000,
and 30000 for chains up to 48, 60, and 100 amino acids, respectively.

The process of selecting η2 moves has to obey a set of legitimacy restrictions that as-
sure compatibility of the component moves used for the construction of a valid compound
move. The fan candidate list strategy is embedded in the generation of the η trial solutions,
whereas the selection of the η1 best solutions from this collection constitutes the filter can-
didate list strategy. A tie-breaking procedure may be necessary to decide about solutions
having the same objective function value. We have tested different randomized rules to gen-
erate variability in the tie-breaking process and found empirically that these choices did not
impact the quality of the final solution nor were significant differences observed in the run-
ning times. Therefore, in our algorithm, ties are broken deterministically by selecting the
first η1 best solutions, among the array of solutions sorted in an ascending order of their
energy value.

A filter and fan neighborhood extends and generalizes the pull move neighborhood in
multiple senses. Since the outcome of a move chosen at one node of the tree is transmitted
to subsequent nodes of the same branch, the method is adaptive in the sense that each pull-
move is chosen according to the current state of the search. Also, the method is dynamic
since the number of pull-moves used to compose a compound move depends on the level
of the tree where the best trial move was found, which usually varies from one iteration to
another, again depending on the state of the search. This produces a generalized form of a
so-called variable-depth neighborhood. Another dynamic feature of the filter and fan method
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is its flexibility in varying the tree width and branch width throughout the search in the case
where the values for η1 and η2 are changed from level to level. (In additional variants of the
procedure, as when making use of constructive or destructive neighborhoods, a solution can
refer to a partial solution, having some components undetermined. Local optimality is then
defined in a special sense relative to the determined components, or by employing a default
trial completion that fills in the values of the undetermined components.)

Figure 5 shows an example of the filter and fan neighborhood for a conformation of a
protein with 20 amino acids in the 2D HP square lattice model, where η1 = η2 = 4 and
L = 5.

A conformation of energy −6 (represented by the root node) denotes a local optimum
determined by the local search phase. The first level of the filter and fan neighborhood is
then generated by applying the η1 = 4 best moves to the root conformation. (Note that at this
stage, these best moves have already been identified by the local search method during the
evaluation of the neighborhood that established the local optimum.) Due to local optimality,
none of the conformations obtained in the first level improves the local conformation. The
next level is created by applying the η2 = 4 best pull-moves to each of the conformations in
the current level, thus generating η1 × η2 = 16 trial conformation from which a new set of
η1 = 4 best conformations is chosen to initiate the next level.

At each level of the tree, we sort the sixteen conformations in an ascending order of their
energy value. That is, the conformation with lowest index has the best energy value. Then
the first four conformations among the ordered conformations are selected to generate the
next level and to break ties (if necessary). For instance, at the second level of the tree, there
happens to be exactly four moves leading to energy of −6, thus no tie-breaking is needed. At
the third level of the tree, however, only two out of sixteen conformations have energy −6,
thus tie-breaking is needed to choose the additional two moves out of the remaining fourteen,
all having energy −5. The two moves are the third and fourth in the deterministically sorted
array of sixteen conformations at level three.

In the figure, the η2 different conformations derived from the same parent conformation
are contained within the rectangles delimited by solid lines whereas the η1 best conforma-
tions selected at each level are contained within “interior rectangles” delimited by dotted
lines. The method continues expanding the neighborhood until the improved conformation
of energy −7 is found in level 5 of the filter and fan tree. The compound move leading to
the improved conformation is then identified by the path indicated by the bold arrows.

3.3 The filter-and-fan implementation

3.3.1 Basic data structures

The design of appropriate data structures is crucial for the efficiency of the algorithm. In our
approach, an adjacency structure is created to capture the relevant attributes of an amino acid
in the conformation such as its ordering position (or index), its type (H or P), its Cartesian
coordinates, and its neighboring amino acids. From this we create an array of adjacency
structures to model the entire conformation.

Specifically, let an array A denote a protein consisting of a chain of amino acids
A[i] (i = 1 to |C|, where |C| denotes the number of amino acids in the chain). We
then model A[i] by an adjacency structure consisting of a set of components that
are relevant for representing the conformation of a protein, writing A[i] as A[i] =
{index(i), type(i), coordinates(i), east(i), south(i),west(i),north(i)}, where index provides
the sequential order of an amino acid in a chain, type records the type of the corresponding
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Fig. 6 Conformation of 14
amino acids with black nodes
denoting 1 (H) and white nodes
denoting 0 (P)

Table 1 The adjacency table
representing the 14-node
conformation in Fig. 6

Node Neighboring node indexes

Index Type Coordinates East South West North

1 1 (0,0) 0 0 2 0

2 1 (−1,0) 1 3 5 0

3 1 (−1,−1) 0 10 4 2

4 0 (−2,−1) 3 9 7 5

5 0 (−2,0) 2 4 6 0

6 1 (−3,0) 5 7 0 0

7 0 (−3,−1) 4 8 0 6

8 0 (−3,−2) 9 0 0 7

9 1 (−2,−2) 10 0 8 4

10 1 (−1,−2) 13 11 9 3

11 1 (−1,−3) 12 0 0 10

12 1 (0,−3) 0 0 11 13

13 1 (0,−2) 14 12 10 0

14 0 (1,−2) 0 0 13 0

amino acid with 1 referring to H and 0 referring to P, coordinates is the structure holding the
Cartesian coordinates (xi , yi ) indicating the position of an amino acid in a 2D lattice, and
the remaining components record the indexes of the four neighboring amino acids.

We refer to the array A of adjacency structures as an adjacency table. Consider for il-
lustration a protein consisting of 14 HP amino acids shown in Fig. 6 that has the following
conformation.

The adjacency table representing the above conformation is shown in Table 1. Each row
of the adjacency table is an adjacency structure representing one amino acid in the protein.

A zero index in the neighboring list indicates that the corresponding neighboring position
is empty. The origin of the Cartesian coordinate system is fixed at the position of the first
amino acid in the initial conformation. As new conformations are generated the adjacency
structure is updated with the coordinates of the amino acids in the new conformation. It is
important to notice that an absolute coordinate system is used so that only points that change
their position need to be updated in the structure. However, to prevent the coordinate values
from becoming exceedingly large, we set upper and lower bounds for x and y components
that are given by the size of an integer data type for the computer in use. Hence, any time a
pull-move results in taking an amino acid to a position that is out of the pre-defined range the
entire conformation is shifted back to relocate node 1 at the origin point (0,0). In addition
to specifying the coordinates of an amino acid it is important to identify its adjacent amino
acids in the lattice. As explained later such adjacency information is fundamental for detect-
ing valid pull moves as well as for their execution. Furthermore, the fact that the adjacency
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Fig. 7 Possible assignments to
the location data member of a
PullMove structure

Fig. 8 Data structures for the filter and fan neighborhood

list refers to indexes in the adjacency table associated with amino acids, the coordinates of
displaced nodes and the adjacency information can be simultaneously updated.

Another basic data structure is the one for representing a simple pull move. A pull move
can be completely defined by reference to three basic components, the pull move initiating
node, the location associated with the initial move and the energy value of the new confor-
mation after completing the pull move. The first two components, which define the execution
of the move as single- and multiple-pull, are implicitly determined by the pull-move rules
as explained in Sect. 3.1. Since the evaluation of a pull move requires the identification of
the resulting conformation, it is useful to record the corresponding energy. Specifically, a
pull move structure is defined as PullMove = {node, location, energy}. There are 4 possible
locations for a node to move to in the execution of a pull move, defined by the four di-
agonal positions adjacent to the node, which we denote by NORTHWEST, NORTHEAST,
SOUTHEAST, and SOUTHWEST as depicted in Fig. 7.

3.3.2 Filter-and-fan data structures

In order to model the filter-and-fan neighborhood tree presented in Sect. 3.2, we extend
the information associated with the pull move to include a new element, an integer data
type named conformation, that identifies the conformation on which the move is carried out.
Hence the pull move structure becomes PullMove = {conformation,node, location, energy}.
From this point onward we say that a move m is a pull move if it is an instance of the
PullMove structure. Also, we refer to x(node) and y(node) as the x and y coordinates of the
pull move initiating node. An illustration of the data structures for one level of the filter and
fan search is depicted in Fig. 8.
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Fig. 9 Six possible instances of a local conformation

Fig. 10 Detecting a valid pull
moves for local conformations of
type 1 (left) and type 2 (right)

Following the conventions introduced in Sect. 3.2, X(k) denotes the set of best confor-
mations at level k, Xi(k) the i-th best conformation in X(k), M(k) the set of best pull moves
associated with X(k) and mik the i-th best pull move in M(k). The logical relationship be-
tween Xi(k) and mik has been identified by the index of the conformation in the generalized
pull move structure. From the figure we can see that the best and the third best pull moves
were derived from the second best conformation at level k while the second best pull move
derived from the first conformation.

We now describe the procedures that are essential for the efficiency of the algorithm.

3.3.3 Procedures for pull move neighborhood

The implementation of a pull move neighborhood requires three basic functions associated
respectively with: (a) detecting all valid pull moves available, (b) executing the pull move,
and (c) computing the energy value of the resulting conformation.

We define a local conformation of node i, denoted by localConformation(i), to be the
structure in the current conformation formed by node i and its adjacent nodes in the amino
acid sequence. Figure 9 illustrates all six possible instances of a local conformation for the
stripped black node appearing in the middle of the structure. Indexes 1 to 6 are used to code
each of these possibilities.

As can be seen, a local conformation is either a straight line (type 1) or an L shape
(type 2). In a 2D lattice, there are two possibilities for a straight line (indexes 1 and 2) and
four possibilities for an L shape (indexes 3 to 6). As shown in Fig. 10, for a straight line, all
the four moving directions are inspected; for an L shape, only three of them are possible.

We employ the following notation and definitions.
pullMoveList: a list storing all valid pull moves associated with a conformation.
GetLocalConformation (i,A): returns the local conformation code associated with the

i-th node.
IsLegal (i, j,A, localConf (i)): returns true if displacing node i to location j is a valid

pull move, and false otherwise.
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AddPullMove (node, location, pullMoveList): attaches a valid pull move to the pull move
list with initial energy value of zero. (Actual energy values are then evaluated after executing
the pull move.)

A straightforward method for detecting all valid pull moves is given by the following
procedure:

Procedure DetectAllPullMoves (A, pullMoveList)
Begin

Initialization
localConformation(index) = 0
pullMoveList = ∅

For index = 1 to |C|
localConformation(index) = GetLocalConformation (index, A)
For location = 1 to numOfLocations

If IsLegal (index, location, A, localConformation(node)) then
AddPullMove (index, location, pullMoveList)

End If
End For

End For
End Procedure

It is important to realize that the evaluation of a pull move requires the execution of
the pull move. Likewise, as the pull move process unfolds, adjacency information of the
current active conformation is necessary to detect further valid pull moves and evaluate the
corresponding complete moves associated with nodes of the filter-and-fan tree. Consider for
implementation purposes an adjacency table A representing the current active conformation
and A′ be a clone of A on which a pull move m is executed.

GetConnected (node, location, A, A′): displaces as many nodes as needed to make the
conformation connected after moving the initiating node to the specified location according
to the pull move rules described in Sect. 3.1. Once the move is completed, both the pull-
move initiating node and the last displaced node are set tabu-active for a predefined number
of iterations. We keep η1 independent tabu lists throughout the tree search.

Procedure ExecutePullMove (A,m)
Begin

Initialization Step
A′ = A

Switch (location)
Case NORTHWEST: x(node) = x ′(node) − 1

y(node) = y ′(node) + 1
Case NORTHEAST: x(node) = x ′(node) + 1

y(node) = y ′(node) + 1
Case SOUTHEAST: x(node) = x ′(node) + 1

y(node) = y ′(node) − 1
Case SOUTHWEST: x(node) = x ′(node) − 1

y(node) = y ′(node) − 1
End Switch
GetConnected (node, location, A,A′)

End Procedure
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Let H(A) denote a list of indexes of type H amino acids in the chain and let N(h) denote
the indexes of nodes adjacent to node h. Then the energy E of a conformation A in the HP
lattice model can be efficiently computed in O(|C|) time using the following procedure.

Begin
Procedure EvaluateEnergy (A)

Initialization Step
E = 0

For h ∈ H(A)

For j ∈ N(h)

If j ∈ H(A) and h > j then
E = E − 1

End If
End For

End For
Return E

End Procedure

3.3.4 Procedures for the filter-and-fan neighborhood

The procedures needed for the construction of the filter-and-fan neighborhood tree are
as follows. Let V (k) = {V1(k),V2(k), . . . , Vη1(k)}(|Vi(k)| = η2) denote the set of η

moves evaluated at the level k from which the η1 best moves for the (new) collection
M(k) = {m1k,m2k, . . . ,mη1k} are selected (M(k) ⊂ V (k), k > 0), thus building conforma-
tions X(k + 1).

EvaluatePullMoveList (Xi(k),Vi(k)): evaluates the energy value for all pull moves in
Vi(k) associated with the i-th best conformation in X(k) and retains the resultant energy
value in the corresponding data member of the PullMove structure. The standard aspiration
criterion is used, which overrides the move tabu status when it improves the best conforma-
tion found so far.

SortPullMoves (V (k), η): sorts the η valid pull moves in V (k) in ascending order of the
associated energy values.

The following procedure is use to set up the first level of the filter-and-fan tree.

Procedure InitializeTree (A)
Begin

DetectAllPullMoves (A,V (k))

EvaluatePullMoveList (A,V (k))

SortPullMoves (V (k), η2)

For i = 1 to η1

Xi = A

ExecutePullMove (Xi,mi1)
End For

End Procedure

Further levels of the tree are created as follows. Define A∗ as the current best conforma-
tion associated with the lowest energy value E∗. Consider also the following basic proce-
dures.

AppendSets (V (k),Vi(k), η2): appends the set Vi(k) of η2 moves to the set V (k).
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UpdateTabuList (Ti ): updates the tabu list Ti associated with the i-th conformation at the
current depth of the tree search.

The following procedure is used to generate L levels of a filter-and-fan neighborhood
tree. The first-improvement strategy can be used to terminate the tree search once an im-
provement is found.

Procedure GenerateTree (X,η1, η2,L)

Begin
While k < L

For i = 1 to η1

DetectAllPullMoves (Xi(k),Vi(k))

EvaluatePullMoveList (Xi(k),Vi(k))

SortPullMoves (Vi(k), |Vi(k)|)
AppendSets (V (k),Vi(k), η2)

End For
SortPullMoves (V (k), η1 ∗ η2)

For i = 1 to η1

ExecutePullMove (Xi(k),mik)

UpdateTabuList (Ti)

E = EvaluateEnergy (Xi(k))

If E < E∗ then:
E∗ = E

A∗ = Xi(k + 1)

End If
End For
k = k + 1

End While
End Procedure

Now the filter-and-fan procedure can simply be written as:

Procedure Filter-and-Fan (A,η1, η2,L)

Begin
InitializeTree (A)

GenerateTree (X,η1, η2,L)

End Procedure

3.3.5 The tabu search procedure

The local search phase of the algorithm is carried out by a simple tabu search that utilizes
only a short-term memory component. Simple pull moves are used to explore the local
search under tabu restrictions embodied in a tabu list T and using the classical aspiration
criterion explained earlier. The search is performed until encountering a sequence of NMAX
iterations that fail to decrease the lowest energy value found so far. The first-improvement
strategy is adopted in order to speed-up the search. To simplify the notation we assume that
m∗ is a global variable that identifies the best pull-move determined by the EvaluatePull-
MoveList function with associated energy E.
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Procedure TabuSearch (A)

Begin
Initialization

A∗ = A

T = ∅

NI = 0
While NI < NMAX

DetectAllPullMoves (A,pullMoveList)
EvaluatePullMoveList (A,pullMoveList)
ExecutePullMove (A,m∗)
UpdateTabuList (T )
If E < E∗ then

A∗ = A

E∗ = E

NI = 0
End If

End While
Return A∗

End Procedure

The main algorithm can now be sketched as:

Algorithm Filter-and-Fan (A,η1, η2,L)

Begin
TabuSearch (A)
InitializeTree (A∗)
GenerateTree (A∗, η1, η2,L)

End Algorithm

4 Computational results

This section analyzes the performance of the proposed Filter-and-Fan algorithm in relation
to the performances of the current best alternative approaches. Computations were carried
out first on the 11 standard 2D HP benchmark problems. We also test our algorithm on the
11 most studied Functional Model Proteins (FMP).1 Certain FMP instances are believed to
be challenging because of the fact that each sequence has a unique native structure (i.e.,
only one optimal solution) and many first excited states (FES, or best suboptimal conforma-
tions). The choice of these 11 FMP sequences, however, seems purely random and does not
include instances where a large number of FES exist (the maximum FES of these 11 FMP
is 299). Hence we further test 25 potentially more difficult FMP instances containing over
530 FES’s.

1There are more than 15000 FMP sequences on the website http://www.cs.nott.ac.uk/~nxk/HP-PDB/
2dfmp.html. Each instance has a length of 23. The optimal energies of all FMP instances were obtained
by complete enumeration algorithms.

http://www.cs.nott.ac.uk/~nxk/HP-PDB/2dfmp.html
http://www.cs.nott.ac.uk/~nxk/HP-PDB/2dfmp.html
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4.1 Experiments with standard 2D HP benchmark

Comparisons are established in terms of the effectiveness and efficiency of the algorithms.
We first discuss the effectiveness of the algorithms based upon the results provided in Ta-
ble 2. The first three columns present the identification number of each problem in the test
bank and their characteristics in terms of the number of H and P amino acids in the chain.
The fourth column provides the best-known energy value (E∗) for each instance and the
remaining columns report the energy values of the best conformations found by the algo-
rithms. The energy values for instances 1–4 are known to be optimal (Hart and Istrail 1996).
These algorithms are2: the Filter-and-Fan approach proposed here (F&F), the Tabu Search
approach (GTabu) by Lesh et al. (2003), the Genetic Algorithm (GA) by Unger and Moult
(1993), the Evolutionary Monte Carlo (EMC) algorithm by Liang and Wong (2001), two
variants of the Ant Colony Optimization algorithm (New-ACO and ACO-HPPFP-3)3 by
Shmygelska and Hoos (2003, 2005) and the Pruned Enriched Rosenbluth Method (PERM)
by Hsu et al. (2003a, 2003b). (To simplify the notation we will refer to the ACO-HPPFP-3
algorithm simply as ACO-3.) Boldfaced numbers correspond to cases where an algorithm
found the best-known energy value and dashed cells indicate that the algorithm has not been
tested on the corresponding problem.

Results for GA, EMC, New-ACO, ACO-3 and PERM reported in this section are directly
taken from Shmygelska and Hoos (2003, 2005). For PERM we consider the expected time to
solve a given problem which has captured the effect of different starting point of the given
HP sequence. We refer to Shmygelska and Hoos (2005) for parameter settings of PERM
and the function for calculating the expected time. Results for GTabu are taken from Lesh
et al. (2003), which represent the expected time to find the best solutions for the four largest
problems. The last three rows of Table 2 provide information on the total deviation in units
of energy above the best known energy values.

For an accurate comparative analysis, it is important to consider the conditions under
which the different algorithms obtain their best solutions. Solutions for GA and EMC cor-
respond to the best energy values found in 5 independent runs of the algorithms. New-ACO
performs between 100 and 500 runs on each instance and reports the best energy value over
all runs. More specifically, the ACO algorithm performs 500 runs for chains up to 50 amino
acids, 300 runs for chains containing more than 50 and up to 64 amino acids, and 100 runs
for larger instances. The same run scheme is employed to the ACO-3 algorithm, except for
instances larger than 64 on which only 20 runs are executed. Results for PERM are the best
energy values obtained in a number of 20 to 200 runs. The results of GTabu are based on
200 runs. We report the best energy values found by the F&F in a single run.

The last two rows of Table 2 provide the deviations for the partial testbed considered by
GA and EMC to allow for a direct comparison with the other algorithms on the correspond-
ing subsets. We can see that only F&F, ACO-3 and PERM find the best known energy values
for the problems tested by GA and EMC algorithms, yielding a zero unit deviation from the
best know energy values.

2The selection of alternative algorithms to compare with was based on whether they attempted to solve all the
11 standard benchmark problems with size up to 100. Some recent approaches, e.g., Krasnogor et al. (2002),
Pelta and Krasnogor (2004), Cutello et al. (2005, 2006) and Jiang et al. (2003), also studied these standard
2D HP instances, but none of them solves instances of size larger than 64. Therefore, they are not included in
Tables 1 and 2 but are considered later on in the FMP benchmarks.
3New ACO and ACO-3 are two improved versions of the original Ant Colony algorithm initially proposed in
Shmygelska et al. (2002).
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Table 2 Comparison of algorithms’ effectiveness

Problem Best
known

Best energy values

Number |H | |P | |C| Ea F&F GTabu GA EMC New
ACO

ACO-3 PERM

1 10 10 20 −9 −9 – −9 −9 −9 −9 −9

2 10 14 24 −9 −9 – −9 −9 −9 −9 −9

3 9 16 25 −8 −8 – −8 −8 −8 −8 −8

4 16 20 36 −14 −14 – −14 −14 −14 −14 −14

5 25 23 48 −23 −23 – −22 −23 −23 −23 −23

6 24 26 50 −21 −21 – −21 −21 −21 −21 −21

7 43 17 60 −36 −36 – −34 −35 −36 −36 −36

8 42 22 64 −42 −42 −42 −37 −39 −42 −42 −42a

9 59 26 85 −53 −53 −53 – −52 −51 −53 −53

10 56 44 100 −48 −48 −48 – – −47 −47 −48

11 55 45 100 −50 −50 −50 – – −47 −49 −50

Total deviation above best
known

0 0 0 8 5 6 2 0

GA 0 0 – 8 4 0 0 0

EMC 0 0 – – 5 2 0 0

aThis best known energy −42 was found by Hsu et al. (2003a, 2003b) by means of “special tricks” (problem-
specific rules). With their general rules, the lowest energy reached by Hsu et al. (2003a, 2003b) is −39.
Shmygelska and Hoos (2003) report −38. Shmygelska and Hoos (2005) report −42 with 78 hours of running
time

In an overall analysis of the complete testbed, the GA and EMC algorithms are clearly
not competitive. Even for relatively small instances these algorithms fail to find the best
solutions in all 5 runs and none of these methods attempts to solve the larger instances. The
New-ACO and ACO-3 algorithms fail to find three and two of the best solutions, respec-
tively. Although GTabu finds best solutions to the four largest instances, it does not do so
with 100% success rate. Lesh et al. (2003) report a success rate of 40%, 12% and 7.5%
for problems 9, 10 and 11, respectively. Only PERM and F&F find the best known solu-
tions to all problems. However, as stated in Hsu et al. (2003a) a fundamental drawback of
PERM as any other chain growth algorithm is the difficulty of solving instances with certain
types of structures such as problem 8. In the original implementation of Hsu et al. (2003a,
2003b), the best energy reached by PERM without the aid of supplementary “tricks” (i.e
using problem-specific rules to replace what they call “blind” search) is −39. In the im-
plementation of Shmygelska and Hoos (2005), −42 is reached after 78 hours of run time
on a 2.4 GHz Pentium IV machine. Our F&F algorithm, in contrast, is able to handle this
instance very efficiently. One possible reason contributing to this difference in performance
may be attributed to both the type of neighborhood employed by each of the algorithms
and the static versus dynamic nature of these neighborhoods. As will be discussed later in
more detail, while PERM restricts the local search to moves obtained by joining segments
of a pre-defined set of partial conformations, our F&F search allows for segments to be
built and joined dynamically within variable-depth neighborhoods that operate on complete
conformations, thus giving no bias on the shape of the new conformations.
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Table 3 Comparison of algorithms’ efficiency

Problem Running times (seconds)

Number |H | |P | |C| F&F GTabua GA EMC ACO
New

ACO-3 PERM

1 10 10 20 <1 – – – 1.67 <1 <1

2 10 14 24 <1 – – – 1.26 <1 <1

3 9 16 25 <1 – – – 5.31 <1 2

4 16 20 36 2 – – – 5.91 4 <1

5 25 23 48 4 – – – 202.90 60 2

6 24 26 50 11 – – – 2476.46 15 3

7 43 17 60 23 – – – 31235.62 1200 4

8 42 22 64 12 <1800 – – 2922.47 5400 78 hrs

9 59 26 85 38 <9000 – – 10950.67 86400b 60

10 56 44 100 30888 <30600 – – 5417.76 36000 480

11 55 45 100 32503 <48600 – – 14853.61 43200 1200

Average of running times 5771 8231 6188.51 15662 25681

aThese values refer to the expected time for finding the best known solutions reported in Lesh et al. (2003)
on a 1 GHz Alpha processor
bThis value corresponds to a cut-off time of 1 day for each run of the algorithm in a 2.4 GHz Pentium IV
processor

We now assess the relative efficiency of the algorithms for which computational times
have been reported in the literature. No running times are available for the GA and EMC
algorithms. For the remaining algorithms, times are in seconds on a 2.4 GHz Pentium IV
computer processor, except for New-ACO whose test runs were executed on a 1 GHz Pen-
tium III machine. Table 3 summarizes these results, where times for New-ACO have been
divided by approximately a factor of 2 (as can be derived from Dongarra 2006) to reflect the
relative speed of the different computer processors. Boldfaced figures in Table 3 indicate ex-
cessive running times for the problems considered, identifying cases in which the associated
algorithms encounter significant difficulty in finding the best known solutions.

F&F reports times to find its lowest energy conformation values in one run. GTabu reports
the expected time to find the best solutions obtained by dividing the computational time by
the success rate achieved on the corresponding instance (Lesh et al. 2003). New ACO and
ACO-3 report average times per run (computed over multiple statistically independent runs)
required by the algorithms to find a solution of the quality specified in Table 2. As for PERM,
the figures refer to the expected time for solving a given problem which has captured the
effect of starting from N or C terminus of the given HP sequence. (In this sense, PERM can
be seen as a multi-start probabilistic algorithm where statistical information gathered in one
run is carried forward to start the search in subsequent runs.)

New-ACO and ACO-3 reveal no significant difference in efficiency when solving rel-
atively small problems 1 to 4. For larger problems the efficiency of these two algorithms
varies with no specific pattern. ACO-3 is clearly more efficient on problems 6 and 7 while
New-ACO performs better on problems 8 and 10. Although New-ACO and ACO-3 algo-
rithms significantly improve the performance of their original version (Shmygelska et al.
2002) these approaches remain inefficient compared to PERM in all but one problem.
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F&F, on the other hand, provides the smallest average of running times while finding
all best known solutions. PERM’s efficiency is greatly hampered by solving problems with
a symmetric optimal structure such as problem 8. As reported in Shmygelska and Hoos
(2003), after running for 48 hours of wall clock time on a 1 GHz Pentium III CPU machine,
the PERM algorithm was sill unable to improve its best solution −38 for problem 8. In fact,
to find a solution having the best known energy −42 for this problem, Shmygelska and Hoos
(2005) determined that the most effective PERM variant needed 78 hours of wall clock time
on a 2.4 GHz Pentium IV CPU processor. By contrast, the F&F algorithm only requires
12 seconds to obtain such a solution. GTabu’s expected time to find the best solutions is
relatively large due to a low success rate on large problems (less than 20% for the two
100-node instances).

In summary, the results on the 11 standard HP benchmark problems show that the F&F
approach clearly outperforms GA, EMC, New-ACO and ACO-3 in terms of solution quality.
GTabu potentially matches F&F in solution quality but with a relatively low success rate.
Only PERM matches the solution quality of F&F, but requires significantly greater compu-
tation time on average due to its extreme inefficiency when dealing with problems with a
symmetric optimal structure.

4.2 Experiments with functional model proteins

We now present the computational results on a set of Functional Model Proteins (FMP)
recently used for computational testing by some leading evolutionary algorithms for the 2D
HP Protein Folding problem, namely the Memetic Algorithm by Krasnogor et al. (2002)
and the Immune Algorithms by Cutello et al. (2005, 2006). Table 4 provides a comparative
analysis on the 11 FMP benchmark problems.

The table above shows that F&F finds optimal energies for all the 11 FMP instances in
less than 2 seconds of computational time on average. F&F also outperforms IM in solution

Table 4 Results on the 11 FMP benchmark instances

Problem Opt. FES # FES F&F IMa MAb

energy energy Energy Run
time

Best
energy

SR Best
energy

1 −20 −18 1 −20 <1 −20 100% −20

2 −17 −15 1 −17 <1 −17 100% −17

3 −16 −14 101 −16 3 −16 56.67% −16

4 −20 −18 7 −20 1 −20 100% −20

5 −17 −15 8 −17 <1 −17 100% −17

6 −13 −11 15 −13 5 −13 100% −13

7 −26 −24 78 −26 <1 −26 100% −26

8 −16 −14 30 −16 2 −16 100% −16

9 −15 −13 144 −15 <1 −15 100% −15

10 −14 −12 77 −14 <1 −14 100% −14

11 −15 −13 299 −15 <1 −15 100% −15

aBased on Cutello et al. (2005, 2006): best results obtained from 30 independent runs with the best parameter
setting
bBased on Krasnogor et al. (2002): best results obtained from multiple runs
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quality, noting that the success rate of IM for problem 3 is only 56.67%. This relative dif-
ference between the methods is further reflected in the performance of IM on the standard
2D HP benchmark problems in Table 1. The latest efforts by Cutello et al. (2006) to solve
instances up to size 64 yields −35 and −39 as the best energy values found by the IM al-
gorithm for problems 7 and 8, a deviation of 1 and 3 units of energy from the best know
value for each of these problems, respectively. Only by incorporating long range moves is
the IM algorithm able to attain the best energy −42 for problem 8, but even then the method
exhibited a success rate of only 3.33%, yielding an average energy value of −39.3. The MA
algorithm finds all the optimal energies for the 11 FMP benchmark problems; however, its
success rate for these instances is unclear.4 The MA algorithm of Krasnogor et al. (2002)
finds the energy −39 (a deviation of 3 units from the best known) for problem 8 in the stan-
dard 2D HP benchmark set while their improved version proposed in Pelta and Krasnogor
(2004) finds −35 (a deviation of 1 unit of energy) for problem 7. Comparison of efficiency
with IM and MA is again very difficult as the authors only report the number of evaluations
before reaching the best.

We note that the choice of these 11 FMP sequences seems purely random and they are
far from being the most challenging FMP instances available (the maximum number of
FES among these 11 FMP benchmarks is only 299). Hence we further studied 25 FMP
sequences whose number of FES exceeds 530. To the best of our knowledge no problems of
this dimension have been yet addressed in the literature. The characteristics of this additional
testset along with the computational results for the F&F algorithm are presented in Table 5.

As it can be seen, the F&F algorithm finds optimal energy values to all the 25 instances
tested. Not surprisingly, the analysis also discloses an increase of running time required on
average relative to the time necessary to solve the 11 benchmark FMP instances, due to the
much larger number suboptimal conformations existent in these 25 instances.

Finally, we should mention that after our paper has been submitted a new Monte Carlo
based algorithm was developed by Zhang et al. (2007). Essentially, this algorithm is a com-
bination of configuration-bias Monte Carlo (CBMC) due to Siepmann and Frenkel (1992)
and the multigrid Monte Carlo (MGMC) approach by Goodman and Sokal (1986). Just like
our F&F algorithm, Zhang et al.’s algorithm finds the best known energy values for all in-
stances of the standard testbed of Table 2. Their algorithm is faster than ours for the two 100
amino acid instances, but apparently not as fast as our F&F algorithm for the hard 85 amino
acid instance.

5 Conclusions

The 2D HP lattice model of the Protein Folding Problem (PFP) has brought new challenges
to the optimization community. Although the problem has been extensively studied for more
than a decade, to the best of our knowledge none of the attempts to create exact solution
methods has succeeded in solving even the smallest instance (containing 20 amino acids) of
the standard testbed considered here. Therefore, the challenge has been passed to advanced
metaheuristic approaches to provide high quality solutions for problems of reasonable size.
Classical genetic algorithms, probabilistic multi-start algorithms based on Monte Carlo sim-
ulations, hybrid ant colony optimization approaches and tabu search approaches have all en-
tered the fray in an effort to find the best possible solutions to these protein folding models.

4Krasnogor et al. (2002) reported the success rate for one particular 2D triangular lattice HP instance based
on various parameter settings of their Memetic Algorithm. But no such information was provided on their
testing of the FMP benchmark instances.
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Table 5 Results for selected 25 FMP instance whose number of FES exceeds 530

Problem Sequence of amino-acids Optimal
energy

FES
energy

Number
of FES

F&F Run
time

1 phppphphphhhphhhhhphhhh −20 −18 534 −20 8

2 phppphphphhhphhhhhhphph −20 −18 545 −20 <1

3 hhphhphppphppppphhhhhhh −16 −14 546 −16 1050

4 phppppphphhhhphhphhhhhh −20 −18 595 −20 6

5 phppphhpphhhpphhhhphhhh −20 −18 609 −20 <1

6 phpphhppppphhphphhhpphp −14 −12 618 −14 3

7 phpphpphhphppppphhphpph −14 −12 625 −14 1789

8 phppppphpphhhphhphphhhh −18 −16 635 −18 3

9 phhphpppppphphpphhpphph −14 −12 635 −14 1

10 phpphhphhppppphphhphhhp −14 −12 650 −14 838

11 phhphphhhpphppppphhphhp −14 −12 650 −14 5

12 phphhphpppppphpphhpphph −14 −12 680 −14 8

13 phphhphppppphhpphhpphph −14 −12 699 −14 9

14 phhphpppppphpphphhhphhp −14 −12 712 −14 8

15 hphppphppppphhhhhhhhhhh −16 −14 778 −16 1032

16 phpphppppppphpppppphhhp −8 −6 801 −8 22

17 phhphpphhphpppppphphpph −14 −12 892 −14 1308

18 phhphpppppphhpphpphhpph −14 −12 946 −14 9

19 phpphpphhpppppphphpppph −11 −9 1037 −11 1780

20 pphphpphhpphphpppphpphp −11 −9 1164 −11 6

21 phpphphhpphhppppphphpph −13 −11 1261 −13 917

22 phpphppppphhhpppphhphhp −11 −9 1710 −11 1168

23 phhphhppppphhpphpphhpph −14 −12 1720 −14 1089

24 phhpphhpphhphpppppphhph −14 −12 1764 −14 1089

25 phphhphpphhphpppppphhph −14 −12 2532 −14 1229

(These are all probabilistic approaches whose performance needs to be evaluated through
multiple runs, whereas our F&F is the first deterministic approach that requires only a sin-
gle run.)

It is worth noting that although advanced metaheuristics are currently capable of find-
ing optimal and near-optimal solutions for other path-based permutation problems in graphs
containing hundreds and sometimes millions of nodes, none of the metaheuristics proposed
for the protein folding problem has proved capable of finding a best known solution within a
reasonable time span for each of the problems in the testbed of this study, where the largest
instance contains only 100 nodes. In fact, as noted earlier the F&F algorithm performs more
robustly and efficiently than the current leading algorithms requiring only a single solution
trial and approximately 10 seconds on average to obtain best known solutions to 9 out of
11 problems. By contrast, the PERM algorithm, which is the best of the alternative algo-
rithms, requires a hundred or more trials in the typical case to obtain best solutions to these
9 problems. On the remaining 2 largest problems, F&F obtains the best known solutions
after five re-starts from diverse solutions generated in the course of the algorithm, which
accounted for approximately 9 hours of computation time. Notably, only a single run of 15
minutes on average was necessary for the F&F algorithm to find a solution that is just one
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unit away from the best known solution obtained by the best alternative method within simi-
lar amount of time. By comparison, this best alternative algorithm required hundreds of runs
and more than 3 days (approximately 78 hours) of wall clock time to find the best solution
for instance 8 (with 64 residues) in the standard testbed, though the F&F algorithm required
approximately 12 seconds on an equivalent computer to find such a solution.

The computational analysis carried out in this study clearly indicates that further research
is needed to solve larger instances of the protein folding model more effectively. In pursuit
of this goal, we offer some tentative speculations about the conditions exploited by our ap-
proach (and other approaches) that lead to a successful algorithm for protein folding, and
ways that our method may be improved. In the context of the HP PFP problem, it is in-
triguing to note that both PERM and the ACO variants incorporate a number of strategies
resembling those that have also been proposed in a variety of tabu search applications and
that we have found relevant in our approach for this problem. We anticipate that these com-
monalities, and variations in the way such strategies have been applied, may provide clues
about differences in the way the various methods perform, and more importantly may offer
insights into the development of more effective algorithms.

The main feature of the PERM framework is its ability to search a restricted solution
space by two processes: (1) operating on selected subsets of promising partial conforma-
tions recorded throughout the search (a statistical weighting process called enrichment),
and (2) eliminating conformations of low weight (a process called pruning). Currently ac-
tive partial conformations are then used as building blocks to create complete (feasible)
conformations. Such iterative constructive processes of PERM have interesting links to the
vocabulary building strategy of tabu search (e.g. Glover 1996a, 1996b, 1999) in which par-
tial solution “fragments” are used to create new complete solutions, and the evaluation of
these fragments is given by weights derived from conditional frequency memory. When
statistical information is used in place of explicit memory structures, as done in PERM, ad-
ditional links are established between such strategies and Probabilistic Tabu Search (Glover
and Laguna 1993; Glover 1989, 1995). Finally, the pool of high-evaluation partial solutions
maintained by the associated enrichment and pruning PERM strategies shares an intrigu-
ing connection with the process of elite solution filtering, which is the foundation of scatter
search (Glover 1977) and is exploited in several TS candidate list strategies.

Similar principles are also implicit in the design of the New ACO and ACO-3 algorithms.
As is the case of conventional evolutionary approaches, including traditional genetic algo-
rithms (GAs), the customary ant colony optimization (ACO) approaches often rely on incor-
porating supplementary procedures in order to enhance their performance when encounter-
ing challenging problems. Genetic algorithms and evolutionary Monte Carlo approaches ap-
plied to protein folding problems, for example, lack such enhancement and have been shown
to lag far behind the alternative approaches for these problems. Similarly, in their analysis
of ant colony approaches for protein folding, Shmygelska et al. (2002) state “It is worth
noting that without a local search phase, the performance of our ACO method is abysmal.”
As a result, the authors augmented their method with “probabilistic iterative improvement
local search” to create the appreciably more effective New-ACO and ACO-3 algorithms.
In addition, these algorithms make use of intensification and diversification strategies by
exploring paths of elite ants (i.e. high quality solutions) by local search and allowing for
a larger number of ants to be subjected to local search, thus opening up the neighborhood
to new regions of the solution space. This augmentation of ant colony ideas by introducing
local search utilizing intensification and diversification strategies likewise share similarities
with TS proposals, which operate in intimate association with local search rather than uti-
lizing a design that treats it as something apart. In particular, the marriage of local search
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with intensification and diversification in tabu search takes the form of decision rules to fos-
ter the inclusion of attributes of elite solutions and focus the search in regions around these
solutions, joined by complementary rules to induce the search to visit regions not previously
visited. (See Glover and Laguna 1997 for a summary of such rules.) An important obser-
vation stems from the fact that our simple deterministic tie-breaking rule used in the F&F
search worked just as well as a variety of randomized rules that we tested empirically. Other
tie-breaking rules, which we believe are interesting to explore, may incorporate long-term
memory considerations so as to generate an appropriate strategic oscillation between inten-
sification and diversification with respect to searches that derive from conformations with
the same energy value.

In sum, local search that (a) utilizes memory of elite solutions and their attributes (either
in direct or statistical form) and (b) strategically drives the search into new regions, plays
a critical role in the performance of the leading metaheuristic algorithms for the PFP. In
this paper we explore mechanisms for achieving these aspects by means of a filter-and-fan
approach incorporating a simple tabu search structure. This approach alternates between
single-path and multiple-path tabu searches using component moves provided by the pull-
move neighborhood, subject to short-term memory controls. The success of the algorithm
compared to alternative state-of-the-art algorithms owes to two fundamental components:
(i) the dynamic and adaptive feature of the search method in exploiting the pull-move neigh-
borhood structure; and (ii) the interplay between the tabu search and the tree search phases
that creates a strategic oscillation between intensification and diversification. In recogni-
tion of this, we anticipate that further improvements in efficiency may result by incorporat-
ing longer-term tabu search memory components to achieve higher levels of intensification,
and by means of vocabulary building strategies that incorporate ejection chain methods and
path-relinking. Promising areas for future investigation consist of extending the proposed
approaches to the solution of other variants of the 2D HP square lattice model such as the
honeycomb lattice, the 3D HP square lattice and the diamond lattice.
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