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Abstract: This paper expands the list of 0–1 problems that can be effectively 
modelled and solved as Unconstrained Quadratic Binary Programs (UQPs).  
UQP has been presented as a general-purpose modelling approach with 
application to a broad range of problem classes (Kochenberger et al., 2004).  
In this paper, we demonstrate that the Linear Ordering Problem (LOP) can be 
easily recast so that it can be treated as a UQP problem, and that large instances 
of the LOP can be effectively handled within this framework. Computational 
results are given demonstrating the viability and attractiveness of this approach. 

Keywords: linear ordering; integer programming; metaheuristics.  

Reference to this paper should be made as follows: Lewis, M., Alidaee, B., 
Glover, F. and Kochenberger, G. (2009) ‘A note on xQx as a modelling and 
solution framework for the Linear Ordering Problem’, Int. J. Operational 
Research, Vol. 5, No. 2, pp.152–162. 



   

 

   

   
 

   

   

 

   

    A note on xQx as a modelling and solution framework 153    
 

    
 
 

   

   
 

   

   

 

   

       
 

Biographical notes: Mark Lewis has a BS in Electrical Engineering from the 
University of Kansas and has worked as an engineer in avionic development at 
Lockheed Martin for 12 years before earning his PhD in Operations Research 
from Southern Methodist University in Dallas, Texas, USA, in 2000.  
His interests include mathematical modelling and algorithm development and 
implementation. He has published in INFORMS Journal on Computing, OR 
Letters, Computers and Operations Research, International Journal of 
Operations and Quantitative Management and others. He is currently an 
Associate Professor of Information Systems and Operations Management at 
Missouri Western State University. 

Bahram Alidaee received his BS from the University of Tehran, Iran,  
his MBA from the University of North Texas and his PhD from the University 
of Texas at Arlington. He is currently a Professor of Operations Management at 
the School of Business Administration, the University of Mississippi.  
His research interests include optimisation, heuristic programming, complex 
systems, and game theory. He has published in variety of journals. He is a 
member of INFORMS, ICS, DSI, POMS, APICS, ISM, IEEE Computer 
Society. 

Fred Glover is a Distinguished Professor of the University of Colorado System. 
He has authored or coauthored more than 350 published papers and eight books 
in the fields of mathematical optimisation, Computer Science and artificial 
intelligence, with particular emphasis on practical applications in industry and 
government. He is the recipient of the von Neumann Theory Prize, a member 
of the National Academy of Engineering, and has received numerous other 
awards and honourary fellowships. He serves on the advisory boards of several 
organisations and is cofounder of OptTek Systems, Inc. 

Gary Kochenberger’s academic specialty concerns Building, Testing, and 
Implementing Algorithms for solving resource allocation problems that arise in 
both the private and public sectors. In recent years, his focus has been on 
problems of a combinatorial nature. He has published four books and numerous 
research papers in such journals as the Operational Research, Management 
Science, Mathematical Programming, Journal of Optimisation Theory and 
Applications, Operation Research, Computers and Operations Research, Naval 
Research Logistics Quarterly, Decision Sciences, Journal of the Operational 
Research Society, European Journal of OR, Interfaces, Operations Research 
Letters, Omega, and the Journal of the Production and Operations 
Management Society. 

 

1 Introduction 

The Linear Ordering Problem (LOP) is well known for its diversity of application as well 
as its computational challenge. This important problem, which is known to be NP-hard, 
has attracted considerable attention in the literature resulting in various efficient, tailored 
solution approaches. In contrast to such special-purpose approaches, this paper highlights 
the potential application of a general-purpose modelling and solution approach to LOP. 
Specifically, we indicate how the unified framework for combinatorial optimisation 
problems given by the Unconstrained Quadratic Binary Program (UQP) 

UQP:   max xtQx    x ∈ {0, 1} 



   

 

   

   
 

   

   

 

   

   154 M. Lewis et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

can be employed to model and solve large instances of LOP. We present a simple 
transformation enabling LOP to be modelled as an instance of UQP and illustrate the 
potential viability of this approach by preliminary computational testing. 

In a theoretical sense, the UQP formulation is as general as the 0–1 pure Integer 
Linear Programming (ILP) problem, and hence it becomes valuable to know the range of 
0–1 ILP problems for which UQP also yields an exploitable design. In particular, we are 
interested in discovering those 0–1 problems whose UQP formulation gives a basis for 
applying methods that efficiently yield high-quality solutions. From this standpoint,  
we are motivated to compare the UQP model against classical 0–1 ILP models, applied to 
problems from different settings to determine which problems are more exploitable by 
UQP and which by 0–1 ILP. Thus, in this paper, we illustrate how, from the standpoint of 
being a general-purpose model design applicable to many other kinds of problems,  
UQP is quite effective at solving LOP. 

We focus on the LOP problem as one that is challenging and has a significant range 
of applications, and compare the use of the UQP model solved by a Tabu search method 
(which has been shown to be effective for this formulation) against the use of the  
0–1 ILP model solved by CPLEX (a leading method based on linear programming  
using branch-and-cut and more recently incorporating some heuristics). It is noted that 
CPLEX is an exact optimising method, guaranteeing an optimal solution in a finite 
(though possibly large) time, while Tabu search is a heuristic approach that does not offer 
such a guarantee. However, we know of no general-purpose heuristic for the 0–1 ILP 
formulation that dominates CPLEX over a notable range of problems. This is due in part 
to the fact that CPLEX has been progressively modified over the years by teams of 
skilled researchers to incorporate a variety of components that may appropriately  
be considered heuristic. For the restricted goal of finding a first-feasible solution, the 
feasibility pump method of Fischetti et al. (2005) has proved better than CPLEX,  
but cannot compete with CPLEX for finding optimal or near-optimal solutions. 

It is on the dimension of quickly finding elite (i.e., very high quality) solutions that 
we seek to compare the UQP formulation to the 0–1 ILP formulation, and for this 
purpose, CPLEX is among the best methods available. Our previous findings of the 
power of the UQP formulation on a wide range of other applications provides impetus for 
investigating whether it may also prove equally effective for the LOP problem. 

Applications of the linear ordering model have been reported in a wide variety of 
problem settings, including economics, logistics, social sciences, and discrete 
mathematics (e.g., see Bruyèrea and Carton, 2007; Mitchell and Borchers, 2000; Steiner 
and Stephenson, 2000; Laguna et al., 1999; Mitchell et al., 1998). The most oft-quoted 
example is from economics where the problem concerns the triangulation of input–output 
matrices – as seen in Grötschel et al. (1984), Mitchell and Borchers (2000). Linear 
ordering applications often involve the ranking of pair-wise comparisons such as used in 
analytical hierarchical processing, with LOP providing an alternative method of 
maximising consistency between comparisons (see Laguna et al., 1999). Applications in 
bioinformatics are seen in Bar-Joseph et al. (2001) and Biedl et al. (2001), which discuss 
the optimal ordering of leaves in binary trees resulting from the hierarchical clustering  
of genes. A potential application in website design maximises an ordering of pages based 
on clickstream or shopping cart data, see Cooley (2003). 
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2 Mathematical model 

Given an n × n matrix of weights C = {cij}, we wish to find the permutation of rows and 
columns of C such that the sum of the weights of the upper triangular matrix are 
maximised. Letting xij = 1 if item i precedes item j in the ordering, the standard binary 
integer programming model (see Grötschel et al., 1984) for LOP is: 

LO_IP: Max   (1 )
n n

ij ij ij ji
i j j i

c x c x
< <

+ −∑ ∑  (1) 

s.t.   xij + xjk – xik < 1   ∀ (i, j, k): i < j < k (2) 

       xij + xjk – xik > 0           ∀ (i, j, k): i < j < k (3) 

       xij ∈ {0, 1}                  ∀ (i, j): i < j. (4) 

2.1 Solving LOP 

Exact methods for solving LOP, which concentrate on LP-based methods and facet 
generation, can be found in Grötschel et al. (1984) and Mitchell and Borchers (2000). 
However, because of the computational difficulty in solving LOP to proven optimality, 
various heuristic methods have been proposed for this problem. The most notable ones 
are the scatter search approaches found in Laguna and Martí (2003), Laguna et al. (1999), 
the Lagrangian-based approach given in Belloni and Lucena (2003) and the genetic  
hill-climbing approach to linear arrangements of undirected graphs in Poranen (2005).  
All these methods are reported to perform well on medium- to large-scale problems.  
Rao and Richa (2004) developed a recursive polynomial time O(log n) approximation 
algorithm for the minimum linear arrangement problem for a general graph with n nodes. 
An α-approximation algorithm finds a solution that is at most α times the cost of an 
optimal solution. 

It is to be emphasised that the solution approaches highlighted above are specifically 
designed for LOPs, while the approach we take in this paper is fundamentally different. 
Rather than an attempt to solve LOP as a large 0–1 linear integer program or create 
specialised heuristics with tailored data structures, we re-cast and solve LOP as an 
instance of the general UQP model. Recent papers (see Kochenberger et al., 2004, 2005; 
Lewis et al., 2005) have reported on the successful application of this unified framework 
for a variety of problems including vertex colouring and task allocation problems. 

With the unified approach, problems are re-cast into the common modelling form of 
UQP. This problem, in turn, is solved by a solution method designed not for the original 
problem structure but for the generic UQP model, so that a single optimiser, i.e., one 
designed to solve UQP, may be used to solve a wide variety of combinatorial problems. 
Our main objective in this paper is to illustrate how this approach can be easily and 
successfully employed to solve the LOP. 

The transformation from a given mathematical structure into the unified framework 
of UQP is accomplished by imposing quadratic infeasibility penalties for violating  
the original problem constraints. This approach can, in principle, be applied to any 
problem with linear constraints, bounded integer variables, and a linear or quadratic 
objective function. In this regard, we refer to a penalty function g(x) as being a  
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Valid Infeasibility Penalty (VIP) if g(x) is zero when x is feasible and positive otherwise. 
Further, if by the selection of an appropriate positive scalar penalty P, the combined 
objective function (i.e., including the penalties) is optimised over binary x when g(x) = 0, 
then we call the term P g(x) a Sufficient Infeasible Penalty (SIP). (The minus sign in the 
combined objective function is of course replaced by a plus sign if the goal is one of 
minimisation.) For models with linear constraints, it is always possible to find quadratic 
VIPs and associated penalties P to yield corresponding SIPs, and thus the constrained 
problem can be re-cast into the form of UQP by identifying the appropriate Q matrix so 
that xtQx represents the combined function that includes the P g(x) term. Generally, VIPs 
will not be known and will have to be discovered. Such discovery is straightforward  
as outlined in Boros and Hammer (2002), Hammer and Rudeanu (1968), and Hansen 
(1970). Although for certain problem classes, such as LOP, VIPs are known in advance, 
making the re-casting into the form of UQP even easier. For example, refer to the 
constraints (2) and (3) and consider the penalty function 

( ) ( , , ) ( ).ij jk ik ik ij jk ij ik jk ikg x g x x x x x x x x x x= = + − −  (5) 

Examining the truth table for xij, xjk and xik (see Table 1) reveals that g(x) is a VIP  
since it is zero for x satisfying (2) and (3) and otherwise positive, i.e., g(1, 1, 0) violates 
equations (2) and g(0, 0, 1) violates equations (3). 

Table 1 Truth table for penalty function g(x) 

xij xjk xik g(x) 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Thus, by identifying an appropriate positive penalty P and subtracting P g(x) from the 
objective function of equation (1) for each i < j < k, LO_IP is directly recast into the  
form of 

LO_UQP : max
binary

tx Qx
x

 

where x is a vector with n′ = n(n – 1)/2 variables and Q is an n′ × n′ symmetric matrix. 
Note that in the recasting of LO_IP into LO_UQP, we go from a linear model with 

many constraints to a quadratic model with no constraints and the transformation of 
LO_IP into LO_UQP is accomplished without the introduction of new variables.  
Also, the original objective function information for LO_IP appears on the main diagonal 
of Q, with the scalar penalty, P, sufficiently large so that solutions to LO_UQP are 
feasible for LO_IP. In the computational testing reported in Section 3, choosing P = 20 
(twice the maximum cij value) was sufficient in that our solutions were feasible  
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in all cases. Additional testing indicated that a wide range of P values has very little 
effect on the results. 

2.2 Example 

The procedure given above is illustrated by the following example found in Laguna  
et al. (1999). Consider the initial table of weights 

 1 2 3 4 
1 0 12 5 3 
2 4 0 2 6 
3 8 3 0 9 
4 11 4 2 0 

where the initial permutation is p = (1, 2, 3, 4) with value 37. 

The LO_IP model is: 

0 12 13 14 23 24 34

12 23 13 12 23 13

12 24 14 12 24 14

13 34 14 13 34 14

23 34 24 23 34 24

Max 32 8 3 8 1 2 7
s.t. 1 0

1 0
1 0
1 0.

x x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

= + − − − + +
+ − ≤ + − ≥
+ − ≤ + − ≥
+ − ≤ + − ≥
+ − ≤ + − ≥

 

Utilising the penalties given by equation (5), the equivalent LO_UQP model is 
completely specified by the 6 × 6 Q matrix: 

8 0
3 2 0

8 4 0
.

0 1
0 2 2

0 7

P P P P
P P P P P
P P P P P

Q
P P P P
P P P P P

P P P P

− − 
 − − − 
 − −

=  − − − 
 − − −
 

− −  

 

Choosing the scalar penalty, P, to be ten and solving the problem: 

0Max 32 tx x Qx= +  

yields the value 15 for xtQx with x12 and x34 = 1 (all other variables equal to zero).  
Thus, the optimum objective function value is 15 + 32 = 47 and the corresponding 
permutation is: p = (3, 4, 1, 2) yielding the table shown below. 
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 3 4 1 2 
3 0 9 8 3 
4 2 0 11 4 
1 5 3 0 12 
2 2 6 4 0 

3 Computational experience 

To test the UQP approach to LOP, we randomly generated a set of linear ordering  
test problems. The publicly available test problems provided by LOLIB (1997) are 
known to be fairly easy to solve exactly with a commercial solver, as reported  
in Belloni and Lucena (2003) and as a result, several authors (Belloni and Lucena, 2003; 
Mitchell and Borchers, 2000) have proposed problem generators intended to produce 
difficult instances of LOP. In generating the problems considered here, we followed the 
approach used in Mitchell and Borchers (2000) to create dense, difficult problems.  
The main diagonal elements of the generated weight matrix C are zero while the  
off-diagonal elements are randomly selected from a uniform distribution between  
zero and ten. Because almost every pair of distinct elements in C has non-zero  
weights, these problems are very dense. As shown below, these problems proved  
to be difficult for CPLEX, even when set to emphasise quickly finding feasible integer 
solutions. 

Table 2 describes the basic characteristics of the 12 problems generated.  
Note that the third column of the table gives the number of variables in both the LO_UQP 
and LO_IP models. However, the fourth column applies only to LO_IP as the quadratic 
model (LO_UQP) is unconstrained except for the binary restrictions. 

Table 2 Problem characteristics 

Problem ID n # variables # constraints 

LO_LAK_20 20 190 2280 
LO_LAK_30 30 435 8,120 
LO_LAK_40 40 780 19,760 
LO_LAK_50 50 1225 39,200 
LO_LAK_60 60 1770 68,440 
LO_LAK_70 70 2415 109,480 
LO_LAK_80 80 3160 164,320 
LO_LAK_90 90 4005 234,960 
LO_LAK_100 100 4950 323,400 
LO_LAK_150 150 11175 1,102,600 
LO_LAK_200 200 19900 2,626,800 

Each of the test problems was re-cast into LO_UQP and solved by a basic Multi-Start 
Tabu search with path Re-linking heuristic (called MSTR), described in Lewis (2005). 
The basic move structure in MSTR is defined by a simple one-opt method  
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(see Palubeckis, 2004) with an additional set of elite solutions, for re-linking and  
re-starts, maintained as the search process unfolds. When no improvements can be found 
by flipping the value of a single binary variable, the multi-start approach perturbs one of 
the elite solutions by setting those variables that were most often at a level of one to zero 
(and vice versa) and giving them longer tabu tenure. As an intensification strategy,  
path re-linking is applied periodically between the current solution and the elite set as 
well as to new incumbent solutions. In all cases, the results obtained, as given in the 
following section, were verified as feasible with respect to the original constrained 
LO_IP formulation. 

3.1 Results of testing 

All problems were run using a 3.2 GHz Dell OptiPlex with 1 GB of RAM. To provide a 
comparison between two general-purpose and one tailored approach, we tested a range of 
problems using MSTR, CPLEX v9.1 and Scatter Search. CPLEX is an industry standard 
branch-and-cut Mixed Integer Program solver that performs very well on smaller LOPs 
via its solid foundation in linear programs, as well as heuristics. Scatter Search’s  
feasible-move permutations with LOP-tailored data structures (see Laguna and Marti, 
2003) are included to gauge the quality of the MSTR solutions for the larger problems 
unsolvable by CPLEX. 

CPLEX has numerous parameters to aid in solving or quickly finding quality 
solutions. Because the problem grows quickly in size, CPLEX branch-and-cut explores 
fewer and fewer nodes of the search tree as size increases. To partially address this issue 
and for a more thorough comparison to our general-purpose heuristic, we investigated  
the option of setting the user-specified parameters for CPLEX to emphasise quickly 
finding integer feasible solutions (as opposed to the more time-consuming tasks of 
proving optimality). This, however, resulted in little improvement over default  
settings. Two other CPLEX parameters that help with large, difficult integer problems 
are: Relaxation-Induced Neighbourhood Search, which heuristically explores the 
neighbourhood of the current solution and preprocessing relaxation, which performs 
preprocessing on the IP relaxation (no preprocessing reductions can be made on the IP). 
Table 3 illustrates the beneficial effects of these two parameters for larger problem sizes, 
with the average improvement being 0.8%. There were no synergistic improvements by 
combining the parameter settings. 

Table 4 presents the results from solving the 12 LO_LAK problems with Scatter 
Search, MSTR and the best CPLEX solution. The first three problem solutions are known 
to be optimal. The table also illustrates the general range of problem sizes solvable by 
CPLEX and MSTR. For n > 80, CPLEX was unable to find feasible integer solutions 
within the 1 h time frame, while MSTR stays within 95% of the best-known solutions for 
all problems. Although larger problem instances can be solved with our current approach, 
a performance decrease was noted on the two largest problems and instances with n 
greater than 200 would benefit from different data structures or larger amounts of 
computer memory. 
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Table 3 CPLEX solutions comparison using various parameters 

Emphasise integer 
feasibility 

Relaxation Induced Neighbourhood 
Search (RINS) 

Preprocessing of 
IP relaxation 

Problem ID 10 min 1 hour 10 min 1 hour 10 min 1 hour 
LAK_20 1140 1140 1140 1140 1140 1140 
LAK_30 2520 2520 2520 2520 2520 2520 
LAK_40 4475 4480 4475 4480 4475 4480 
LAK_50 6731 6903 6731 6949 6919 6919 
LAK_60 9655 9779 – 10054 9765 9765 
LAK_70 – 13140 – 12992 – 13198 
LAK_80 – – – 16993 – 16890 
LAK_90 – – – – – – 
LAK_100 – – – – – – 
LAK_150 – – – – – – 
LAK_200 – – – – – – 

Table 4 SS/CPLEX/MSTR solution comparison 

CPLEX MSTR 
Problem ID Scatter search 10 min 1 hour 10 min 1 hour 
LAK_20 1140 1140 1140 1140 1140 
LAK_30 2520 2520 2520 2520 2520 
LAK_40 4480 4475 4480 4469 4469 
LAK_50 6997 6919 6949 6963 6963 
LAK_60 10139 9765 10054 10042 10064 
LAK_70 13630 – 13198 13400 13416 
LAK_80 17788 – 16993 17276 17331 
LAK_90 22490 – – 21921 22179 
LAK_100 27591 – – 26667 27031 
LAK_150 61414 – – 57944 59414 
LAK_200 107829 – – 100551 103031 

4 Summary and conclusions 

In this paper, we presented a simple and easy-to-implement transformation that enables 
the standard linear 0–1 model of the LOP to be re-cast into the form of an unconstrained 
UQP. In doing so, one goes from a linear model with many constraints to a quadratic 
model with no constraints. In addition, we demonstrated that basic metaheuristic 
methods, like the tabu search approach utilised here, can be used to efficiently generate 
high-quality solutions for LOP once this problem is put in the form of UQP. Note that  
the solution method employed here was very basic and was designed for the  
general instance of UQP. High-quality solutions were efficiently obtained by this 
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modelling/solution framework with no specialisation at all for the class of problems being 
solved. 

The results reported in this paper are consistent with the competitive results obtained 
by the UQP approach to other problem classes (see, for instance Kochenberger  
et al., 2005; Lewis et al., 2005). Our performance here serves to further emphasise the 
viable, robust nature of UQP as a fruitful modelling and solution framework for various 
combinatorial optimisation problems. As new and improved optimisers become available 
for UQP, this unified framework will correspondingly become an increasingly  
attractive approach for rapidly finding high-quality solutions to these difficult problems. 
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