

 Int. J. Metaheuristics, Vol. 1, No. 1, 2010 3

 Copyright © 2010 Inderscience Enterprises Ltd.

Efficient evaluations for solving large 0–1
unconstrained quadratic optimisation problems

Fred Glover*
OprTek Systems, Inc.,
1919 Seventh Street,
Boulder, CO 80302, USA
E-mail: glover@opttek.com
*Corresponding author

Jin-Kao Hao
Laboratoire d’Etude et de Recherche en Informatique (LERIA),
Université d’Angers,
2 Boulevard Lavoisier,
49045 Angers Cedex 01, France
E-mail: jin-kao.hao@univ-angers.fr

Abstract: We provide a method for efficiently evaluating moves that
complement values of 0–1 variables in search methods for binary unconstrained
quadratic optimisation problems. Our method exploits a compact matrix
representation and offers further improvements in speed by exploiting sparse
matrices that arise in large-scale applications. The resulting approach, which
works with integer or real data, can be applied to improve the efficiency of
a variety of different search processes, especially in the case of commonly
encountered applications that involve large and sparse matrices. It also enables
larger problems to be solved than could previously be handled within a given
amount of available memory. Our evaluation method has been embedded in
a tabu search algorithm in a sequel to this paper, yielding a method that
efficiently matches or improves currently best-known results for instances from
widely used benchmark sets having up to 7,000 variables.

Keywords: 0–1 optimisation; unconstrained quadratic programming;
metaheuristics; computational efficiency; tabu search.

Reference to this paper should be made as follows: Glover, F. and Hao, J-K.
(2010) ‘Efficient evaluations for solving large 0–1 unconstrained quadratic
optimisation problems’, Int. J. Metaheuristics, Vol. 1, No. 1, pp.3–10.

Biographical notes: Fred Glover holds the title of Distinguished Professor at
the University of Colorado and is the Chief Technology Officer for OptTek
Systems, Inc. He has authored or co-authored more than 370 published articles
and eight books in the fields of mathematical optimisation, computer science
and artificial intelligence. He is the recipient of the distinguished von Neumann
Theory Prize, an elected member of the National Academy of Engineering, and
has received honorary awards and fellowships from the American Association
for the Advancement of Science (AAAS), the NATO Division of Scientific
Affairs, the Energy Research Institute (ERI) and numerous other organisations.

 4 F. Glover and J-K. Hao

Jin-Kao Hao holds a Full Professor position in the Computer Science
Department of the University of Angers (France) and is currently the Director
of the LERIA Laboratory. His research lies in the design of effective
heuristic and metaheuristic algorithms for solving large-scale combinatorial
search problems. He is interested in various application areas including
bioinformatics, telecommunication networks and transportation. He has
co-authored more than 100 peer-reviewed publications in international journals,
book chapters and conference proceedings.

1 Introduction

The binary unconstrained quadratic programming problem may be written as:

oUQP: Minimise x xQx
x binary

=
 (1)

where Q is an n by n matrix of constants and x is an n-vector of binary (0–1) variables.
The UQP formulation is notable for its ability to represent a wide range of important
problems, including those from social psychology (Harary, 1953), financial analysis
(Laughunn, 1970; McBride and Yormark, 1980), computer aided design (Krarup and
Pruzan, 1978), traffic management (Gallo et al., 1980; Witsgall, 1975), machine
scheduling (Alidaee et al., 1994), cellular radio channel allocation (Chardaire and Sutter,
1994) and molecular conformation (Phillips and Rosen, 1994). Moreover, many
combinatorial optimisation problems pertaining to graphs such as determining maximum
cliques, maximum cuts, maximum vertex packing, minimum coverings, maximum
independent sets and maximum independent weighted sets are known to be capable of
being formulated by the UQP problem as documented in papers of Pardalos and
Rodgers (1990) and Pardalos and Xue (1994). A review of additional applications and
formulations can be found in Kochenberger et al. (2004).

Our purpose in this note is to provide a more effective method for updating
evaluations in search processes that operate by complementing (flipping) values of the
0–1 variables, which are used by the current state-of-the-art methods for solving the
UQP. We propose a design that improves on the customary mechanism (see, e.g., Glover
et al., 1998a; Merz and Freisleben, 2002) by introducing rules for taking advantage
of a lower triangular matrix representation and sparse matrix structures. The resulting
procedure offers appreciably greater efficiency for the case where the Q matrix contains
numerous 0 entries, as typically occurs in large problems. In such applications, our
approach requires fewer operations than the method customarily used in previous
applications and also allows problems of greater size to be handled within a given
computer memory limit.

2 Notation and conventions

Let N = {1, …, n} denote the index set for components of the x vector and the rows and
columns of Q. We assume the Q matrix is preprocessed to put it in lower triangular form
by redefining (if necessary):

 Efficient evaluations 5

ij ij ji jiQ : Q Q followed by Q : 0 for all i, j N such that j i= + = ∈ > (2)

Thus, for example, a UQP problem for n = 5 with a lower triangular Q matrix has the
structure:

1 2 3 4 5

1 11

2 21 22

3 31 32 33

4 41 42 43 44

5 51 52 53 54 55

 x x x x x

x Q 0 0 0 0
x Q Q 0 0 0
x Q Q Q 0 0
x Q Q Q Q 0
x Q Q Q Q Q

The variables x1 to x5 associated with the rows and columns give a convenient way to
represent the objective function xQx, which arises by multiplying each Qij entry shown
by the associated row and column variables xi and xj and then summing. (Hence, in the
present case, the objective function is given by x1Q11x1 + (x2Q21x1 + x2Q22x2) + (x3Q31x1
+ x3Q32x2 + x3Q33x3) + … .) The indicated preprocessing step to create the lower
triangular structure does not change the problem, since xixj = xjxi.

For our subsequent purposes, we find it useful to factor out the row variables xi and to
write xo = xQx in the form:

()()()o i ij j iix x Q x : j N, j i Q : i N= ∈ < + ∈∑ ∑ (3)

The diagonal coefficient Qii can be separated from the off-diagonal coefficients Qij for
j < i in the preceding expression since the fact that xi is a 0–1 variable which implies
xiQiixi = xiQii.

3 Key result

Let x′ and x″ represent two binary solutions where x″ is obtained from x′ by flipping the
value of a single variable xk from 0 to 1 or from 1 to 0 (according to whether xk′ is 0
or 1). Define xo′ = x′Qx′ and xo″ = x″Qx″. Then, the value Δxo(k) = xo″ – xo′, which
depends on the choice of the variable xk, discloses whether the move that replaces x′ by
x″ will cause xo to improve or deteriorate (respectively, decrease or increase) relative to
the minimisation objective. The ability to make such an evaluation rapidly affects the
efficiency of search methods that takes account of changes in xo when selecting a variable
xk for the purpose of changing its value.

We first specify a rule for quickly identifying Δxo(k) for each k ∈ N without
undertaking to exploit the sparseness of Q. Then, we describe the implementation of this
rule that takes advantage of sparse matrices.

Define RowValue(i) and ColValue(j) as a function of a current solution x′ by:

()ij jRowValue(i) Q x : j N, j i′= ∈ <∑ (4)

 6 F. Glover and J-K. Hao

and

()ij iColValue(j) Q x :i N, i j′= ∈ <∑ (5)

By convention, RowValue(i) = 0 when i = 1 and ColValue(j) = 0 when j = n.
During the examination of different alternatives for the choice of xk, the quantities

RowValue(i) and ColValue(j) remain constant for all i, j ∈ N, so that they may be
accessed by a simple look up operation without requiring any computation to obtain
them. Subsequently, once a particular variable xk is selected and a move is executed that
replaces xk′ by xk″, the quantities RowValue(i) and ColValue(j) will be updated by an
operation that involves a single pass of the indexes from 1 to n and performing a simple
addition (or subtraction) for each of them. The rule that achieves this is as follows.

3.1 Evaluation and updating rule

Let δ = 1 if xk′ = 0 and let δ = –1 if xk′ = 1. Then:

o kkx (k) RοwValue(k) + ColValue(k) + Q).Δ = δ((6)

Upon executing the move that replaces xk′ by xk″ to yield the solution x″, the new
quantities RowValue(i) and ColValue(j), for the specific indexes over which these
quantities change, are given by:

ikRowValue(i) : RowValue(i) Q for i N, i k= + δ ∈ > (7)

kjColValue(j) : ColValue(j) Q for j N, j k= + δ ∈ < (8)

The use of δ = 1 or –1 is not to literally perform a multiplication, but simply to identify a
sign to be attached to a specified quantity.

3.2 Justification of the rule

We rewrite the expression (3) for xo by decomposing it in the following manner:

()()()i ij j iix Q x : j N, j i, j k Q : i N, i k∈ < ≠ + ∈ ≠∑ ∑ (9.1)

())k ij k kk x Q x : j N, j k Q+ ∈ < +∑ (9.2)

()())i ik k ii x Q x : k i Q : i N+ < + ∈∑ (9.3)

Note that (9.3) can also be written as:

()() ()k ik i ii i x Q x : i N, i k Q x : i N, i k+ ∈ > + ∈ >∑ ∑ (9.4)

Given that xi″ = xi′ for all i ≠ k, it follows that Δxo(k) can be reduced to:

() ()()i i ij k kk ik ix x Q x : j N, j k Q ((Q x : i N, i k)))′′ ′− ∈ < + + ∈ >∑ ∑ (10)

 Efficient evaluations 7

From the definitions, we see that δ = xi″ – xi′ and the summation terms within (10) (which
exclude Qkk) equal RowValue(k) and ColValue(k). This establishes the validity of the
expression (6) for Δxo(k). The updated forms of RowValue(i) and ColValue(j) given in
(7) and (8) follow by a corresponding analysis.

4 Exploiting sparseness

To exploit sparseness using the expressions (7) and (8) for updating RowValue(i) and
ColValue(j), we introduce the following data structures: ‘successive indexes h = 1, 2, …,
hLast are assigned to the non-zero off-diagonal entries of Q, where each such non-zero
Qij for i > j is recorded by setting Q(h) = Qij and simultaneously recording Row(h) = i
and Col(h) = j. The diagonal Qii values for i ∈ N are recorded separately by setting
Qo(i) = Qii.

This data structure is additionally augmented to include linked lists that make it
possible to access the entries Q(h) either of two ways: by row or by column. For this, we
introduce two arrays RowFirst(i) and ColFirst(j) for i, j ∈ N, which are initialised by
setting all their entries to 0. Then, each time a new entry Q(h) is entered via the input
data, we refer to the associated values i = Row(h) and j = Col(h) and set:

RowNext(h) RowFirst(i)
RowFirst(i) h
ColNext(h) ColFirst(j)
ColFirst(j) h.

=
=
=
=

By making use of these records, upon the conclusion of the input process, all non-zero
entries of row i can be traced by the sequence:

ij

h RowFirst(i)
While h 0:

Q(h) is a non-zero entry Q of Q, where i Row(h) and j Col(h)

h : RowNext(h)
EndWhile

=
≠

= =

=

All non-zero entries of column j can be traced in a similar manner by replacing
RowFirst(i) with ColFirst(j) and replacing RowNext(h) with ColNext(h).

The entries of a given row or column accessed in this fashion will be encountered in
the reverse order from the sequence of the input data. We note that this order is irrelevant
from the standpoint of applying the evaluation and update rule embodied in the
expressions (6), (7) and (8).

If the input data do not initially provide the entries of Q in lower triangular form, then
an associated preprocessing operation is required as previously noted. The extra memory
for such a step depends on the protocol used for entering the data (e.g., whether all entries
of each row or of each column appear in a single block).

The use of additional memory can be avoided by performing a further step for each
non-zero entry Qij encountered, as follows.

 8 F. Glover and J-K. Hao

a If i > j, the linked sequence of h values starting with h = RowFirst(j) (and proceeding
with h := RowNext(h)) is scanned to see if i = Col(h) is encountered as a column
entry.
1 if i = Col(h) is found in this fashion, augment Q(h) by setting Q(h) := Q(h) + Qij
2 otherwise, if i is not found in the array Col(h) for the values of h traced, then

record Qij as a new Q(h) value by setting:

hLast : hLast 1
Row(hLast) j and Col(hLast) i.

= +
= =

b If i < j, likewise check whether a value for Qij was previously recorded (since it may
have been produced by the process just described). In this case, the trace is initiated
starting with h = RowFirst(i) (and proceeding with h := RowNext(h)) to see if
j = Col(h) is encountered.
1 if j = Col(h) is found in this fashion, augment Q(h) by setting Q(h) := Q(h) + Qij
2 otherwise, if j is not found in the array Col(h) for the values of h traced, then

record Qij as a new Q(h) value by setting:
hLast : hLast 1
Row(hLast) i and Col(hLast) j.

= +
= =

By means of this data structure, the updating specified in (7) to update RowValue(i) for
i > k proceeds as follows:

ik

h ColFirst(k)
While h 0:

RowValue(i) : RowValue(i) Q
h : ColNext(h)

EndWhile

=
≠

= + δ
=

An analogous rule updates ColValue(j) for j < k as specified in (8), interchanging ‘Row’
and ‘Col’ and replacing (i) with (j) and Qik with Qkj.

Although these processes are somewhat more complex than those customarily used to
perform updating operations in solving 0–1 UQP problems, the potential for solving large
and sparse problems with significantly greater efficiency makes them attractive for
inclusion within future search methods for UQP.

5 Concluding remarks

The fast evaluation strategy introduced here has been integrated in a recent tabu
search algorithm for the binary unconstrained quadratic programming problem (Glover
et al., 2009). Thanks to this strategy, the algorithm is able to efficiently examine, at
each iteration, a large number of neighbouring solutions defined by the one-flip move.
Combined with an extended memory-based diversification strategy, the proposed
algorithm proves to be highly effective in solving a range of benchmark instances from
the literature. For example, for the well-known UQP instances (up to 2,500 variables)
introduced in Glover et al. (1998b) and Beasley (1998) and used by many published

 Efficient evaluations 9

papers, this algorithm reaches the best-known objective values on average in less than
one minute on a PC with Pentium 2.66 GHz CPU and 512 M RAM, representing a
decrease of at least 40% compared with previous implementations. Moreover, tested on
the set of 21 large instances with 3,000 to 7,000 variables introduced in Palubeckis (2004,
2006), the algorithm is able to equal or even improve the previously best results.

Furthermore, we note that the one-flip move evaluation introduced in this note can
also contribute to the specification of a fast evaluation strategy for more sophisticated
moves such as two-flip moves. Such a perspective is particularly useful for establishing
complementary and combined neighbourhood relations that are indispensable for solving
larger and more diverse classes of UQP instances.

Finally, a more explicit analysis of improvements in computation time and memory,
as described in the Glover et al.’s (2009) paper, constitutes an interesting direction for
future work.

Acknowledgements

The work is partially supported by a ‘Chaire d’excellence’ from ‘Pays de la Loire’
Region (France)’ and regional MILES (2007–2009) and RaDaPop projects (2008–2011).
We are grateful for the comments by a referee that have improved the exposition of this
note.

References
Alidaee, B., Kochenberger, G. and Ahmadian, A. (1994) ‘0–1 quadratic programming approach for

the optimal solution of two scheduling problems’, International Journal of Systems Science,
Vol. 25, pp.401–408.

Beasley, J.E. (1998) Heuristic Algorithms for the Unconstrained Binary Quadratic Programming
Problem, Technical report, Management School, Imperial College, UK.

Chardaire, P. and Sutter, A. (1994) ‘A decomposition method for quadratic zero–one
programming’, Management Science, Vol. 41, No. 4, pp.704–712.

Gallo, G., Hammer, P. and Simeone, B. (1980) ‘Quadratic knapsack problems’, Mathematical
Programming, Vol. 12, pp.132–149.

Glover, F., Kochenberger, G., Alidaee, B. and Amini, M. (1998a) ‘Tabu search with critical event
memory: an enhanced application for binary quadratic programs’, in S. Voss, S. Martello,
I.H. Osman and C. Roucairol (Eds.): Meta-Heuristics – Advances and Trends in Local Search
Paradigms for Optimization, pp.83–109, Kluwer Academic Publishers.

Glover, F., Kochenberger, G.A. and Alidaee, B. (1998b) ‘Adaptive memory tabu search for binary
quadratic programs’, Management Science, Vol. 44, No. 3, pp.336–345.

Glover, F., Lü, Z. and Hao, J.K. (2009) Diversification-Driven Tabu Search for Unconstrained
Binary Quadratic Problems, Research report, LERIA, Université d’Angers.

Harary, F. (1953) ‘On the notion of balanced of a signed graph’, Michigan Mathematical Journal,
Vol. 2, pp.143–146.

Kochenberger, G., Glover, F., Alidaee, B. and Rego, C. (2004) ‘A unified modeling and solution
framework for combinatorial optimization problems’, OR Spectrum, Vol. 26, pp.237–250.

Krarup, J. and Pruzan, A. (1978) ‘Computer aided layout design’, Mathematical Programming
Study, Vol. 9, pp.75–94.

Laughunn, D.J. (1970) ‘Quadratic binary programming’, Operations Research, Vol. 14,
pp.454–461.

 10 F. Glover and J-K. Hao

McBride, R.D. and Yormark, J.S. (1980) ‘An implicit enumeration algorithm for quadratic integer
programming’, Management Science, Vol. 26, pp.282–296.

Merz, P. and Freisleben, B. (2002) ‘Greedy and local search heuristics for unconstrained binary
quadratic programming’, Journal of Heuristics, Vol. 8, No. 2, pp.197–213.

Palubeckis, G. (2004) ‘Multistart tabu search strategies for the unconstrained binary quadratic
optimisation problem’, Annals of Operations Research, Vol. 131, pp.259–282.

Palubeckis, G. (2006) ‘Iterated tabu search for the unconstrained binary quadratic optimization
problem’, Informatica, Vol. 17, No. 2, pp.279–296.

Pardalos, F. and Xue, J. (1994) ‘The maximum clique problem’, The Journal of Global
Optimization, Vol. 4, pp.301–328.

Pardalos, P. and Rodgers, G.P. (1990) ‘Computational aspects of a branch and bound algorithm for
quadratic zero–one programming’, Computing, Vol. 45, pp.131–144.

Phillips, A.T. and Rosen, J.B. (1994) ‘A quadratic assignment formulation of the molecular
conformation problem’, Journal of Global Optimization, Vol. 4, pp.229–241.

Witsgall, C. (1975) Mathematical Methods of Site Selection for Electronic System (EMS), NBS
Internal report.

