
1

Surrogate Constraint Analysis for New Heuristics and
Learning Schemes for Satisfiability Problems

Arne Løkketangen and Fred Glover

ABSTRACT. Surrogate constraint analysis has been applied effectively to a variety of
combinatorial optimization problems, as a foundation for both exact and heuristic
methods. In the heuristic domain, surrogate constraint methods are particularly suited to
the creation of associated learning procedures and to the application of probabilistic
decisions. We show that these approaches are natural and effective for satisfiability
(SAT) problems. Added motivation comes from observing that the current best exact
and heuristic procedures for multidimensional knapsack problems are provided
independently by surrogate constraint methods and probabilistic methods that use
memory and learning structures (derived from tabu search). We show that the SAT
problem can be formulated as a special instance of a binary-choice multidimensional
knapsack problem (or equivalently, a binary-choice generalized covering problem), and
demonstrate how surrogate constraint analysis can be specialized in a particularly
convenient way to exploit the structure of this problem. Our approach incorporates
simple (first order) instances of adaptive memory structures characteristic of tabu
search implementations, to give a learning effect to guide the search. This use of
memory adds a dimension to the solution process that has not adequately been
examined in the past.
 We find that the combination of surrogate constraint analysis and simple learning
proves more effective than probabilistic search designs, including those that encompass
probabilistic rules that have been highly favored in previous SAT approaches. These
outcomes motivate a closer look at surrogate strategies and more advanced ways of
integrating them with adaptive memory and learning procedures.

1. Introduction
Surrogate constraints are designed to capture information from an original system of

constraints that is not available from its individual members. This information capturing
function is achieved by strategies for combining and processing the original constraints
to create new ones, with the goal of analyzing and tracing consequences of the original
system that may not otherwise be readily accessible. Surrogate constraint analysis has
established itself as a useful tool for exploiting system structures, with particular
application to combinatorial search. (See, for example, Glover (1965, 1975), Greenberg
and Pierskalla (1970, 1973), Karwan and Rardin (1979), Gavish and Pirkul (1985),

 1991 Mathematics Subject Classification. Primary 05A99; Secondary 05-04
.

LØKKETANGEN AND GLOVER2

Freville and Plateau (1993), Yu 1994)). For a survey on algorithms for the satisfiability
problem, see Gu at. al. (1995).

Our goal in the present paper is to show how surrogate constraint analysis can be
used to guide heuristic approaches for the satisfiability problem. In particular, we give
surrogate constraint generation procedures and associated decision rules to construct
advanced starting solutions, and then to provide a basis for more refined improvement
approaches. We show that our surrogate constraint design is conveniently suited to
incorporate learning procedures for generating improved surrogate constraints, and
hence for providing better decision rules, as the solution effort continues.

Experience with surrogate constraint approaches for combinatorial optimization
problems has shown that using different weights for different constraints, by well-
defined processes, proves significantly more effective than choosing all weights the
same. Our study examines the outcome of using weights prescribed by these more
general processes, specifically making use of weights that are fast to update, involving
the same order of computation as required when all weights are chosen equal to 1. This
use of surrogate constraints also has the side benefit of exploiting the presence of
dominated and “nearly-dominated” constraints, without the effort of preprocessing to
identify such constraints.

The application of surrogate constraint analysis to the SAT problem (by our
formulation) discloses an interesting connection between this analysis and the “move
evaluation” rules of the popular GSAT code (see Selman et al. 1992), and its more
recent extensions: the GSAT rules arise as a simple instance of rules standardly used in
surrogate constraint methods, by restricting weights for all constraints to equal 1. Thus,
our approach establishes a continuity with the approaches derived from GSAT, yielding
a larger class of choices by surrogate constraint analysis.

We are especially interested in combining surrogate constraint analysis with
adaptive memory mechanisms as proposed in tabu search, as a basis for establishing
learning effects. In this paper we examine only very simple first order uses of such
memory, which we implement both with deterministic and probabilistic decision rules.
The tabu search orientation gives an appealing foundation for the probabilistic element,
because the rules of probabilistic tabu search (PTS) bear the same relation to the
probabilistic component of GSAT as the evaluation rules of surrogate constraint analysis
bear to the evaluation rules of GSAT; i.e., GSAT implicitly chooses all probabilities for
the moves on its candidate list to be the same, whereas PTS employs a rationale that
causes these probabilities (potentially) to be different (See, for example, Løkketangen
and Glover, 1995). (Recent extensions of GSAT, which use a candidate list known as an
“essential move” candidate list, implicitly use two different probabilities.) A natural
continuum therefore also results between the probabilistic component of our approach
and approaches popularly applied to SAT problems, by means of a framework that offers
broader strategic options than previously investigated. Our study examines a few simple
PTS variants for selecting probabilities, including designs that have proven effective in
other combinatorial optimization settings.

Computational experiments are reported for different variants of our surrogate
constraint approach, applied to satisfiability problems from a benchmark testbed. From
this, we identify surrogate constraint strategies that prove effective in the satisfiability
context, and indicate possible extensions of our approaches to other combinatorial
problem settings.

The layout of this paper is as follows. After this introduction, a mathematical
programming formulation of the satisfiability problem is given in Section 2. The

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 3

fundamentals of surrogate constraints are given in Section 3, and the use of surrogate
constraints to guide a constructive heuristics is described in Section 4. Section 5
similarly gives ways for using surrogate constraints in an iterative improvement search
phase. In Section 6 learning is introduced to give additional guidance, and Section 7
outlines aspects of probabilistic tabu search. Section 8 relates the use of surrogate
constraints to other approaches and Section 9 gives computational results. Finally
conclusions and directions for further research are in Section 10 and references in
Section 11.

2. Formulation.
The satisfiability problem can be given a mathematical programming formulation in

several ways, each seeking a feasible solution to a system of inequalities, with implicit
or explicit inclusion of binary choice constraints. A standard representation replaces
literals by variables xj and their complements 1 − xj, to give rise to the system

(I) Ax ≥ b
 x binary

where A is an m*n matrix of 0´s, 1´s and −1´s, and b and x are n*1 column vectors. The
ith constraint of the system,

Aix ≥ bi

has the property that the number of −1´s in the row vector Ai equals 1 − bi, where bi is an
integer ≤ 1.

Equivalent formulations can be created by a device that allows any pure zero-one
integer linear programming problem to be expressed as a generalized covering problem
or a multidimensional knapsack problem, subject to binary choice constraints.
Specifically, we rewrite an arbitrary A matrix as the difference of two nonnegative
matrices, A = P − Q, where the nonzeroes of P consist of the positive entries of A and
the nonzeroes of Q consist of the absolute values of the negative entries of A. Then, for
 d = b + Qe, where e represents the column n-vector of 1´s, the system (I) can be
expressed in the following binary choice generalized covering formulation:

(GC) Px + Qy ≥ d
x + y = e
x, y binary

The covering terminology results because of the nonnegativity of P and Q (where
d > 0 may be assumed after removing trivially redundant inequalities), and the binary
choice terminology results because the equality constraints have the form xj + yj = 1,
presenting a binary choice between the two variables xj and yj.

For the SAT problem, d is an m vector of 1´s, and the inequalities of the system are
those of a simple covering problem (since P and Q in this case are matrices of 0´s and
1´s).

A corresponding expansion, based on expressing the original system in the form
A´x ≤ b´, where A´ = −A and b´ = −b, creates the following multidimensional knapsack
representation:

LØKKETANGEN AND GLOVER4

(MK) Qx + Py ≤ g
x + y = e
x, y binary

The matrices P and Q here are the same as in the (GC) formulation, and g = Pe − b.
The (MK) formulation also can be obtained by substituting e − x for y and e − y for x in
(GC), noting that g can also be written as g = Pe + Qe − d. The multidimensional
knapsack terminology results because of the nonnegativity of the problem matrices and
vectors (where g ≥ 0 is required to assure feasibility) which causes the formulation to
adhere to a standard multidimensional knapsack format, with the inequality portion of
the system in the reverse direction from that of (GC). It should be noted that the
composition of P and Q in both (GC) and (MK) is not rigidly determined, in the sense
that the columns Pj and Qj of P and Q can be interchanged by renaming their associated
variables xj and yj.

Although the three formulations (I), (GC) and (MK) are entirely equivalent, the
representations of (GC) and (MK) are useful for enabling certain connections to be seen
more readily. The (GC) formulation is clearly a natural one in the present context, since
it resembles the statement of the SAT problem in its customary logical representation.
We will see that it has other conveniences for analyzing the SAT problem. The (MK)
formulation, however, can be useful for generating insights in other settings. (An
interesting exercise is to translate the procedures we subsequently specify for the (GC)
formulation into equivalent steps for the (MK) formulation.)

In this paper we apply surrogate constraint analysis to the SAT problem in the
following two ways:

(1) to generate a collection of advanced starting solutions by a constructive
approach—including a component that is able to learn how to modify previous
decisions.

(2) to introduce a related exchange procedure for obtaining improved solutions,
similarly based on surrogate constraint evaluations and learned modifications, to extend
the advanced starting approach to yield a general heuristic.

In the process we discuss a number of strategic considerations that are also relevant
to other types of combinatorial optimization problems.

3. Surrogate constraint fundamentals.
The most common form of surrogate constraint generation, which we employ here,

results by creating surrogate constraints as nonnegative linear combinations of the
constraints of the original system (expressed as inequalities). For convenience we write
the inequality portion of (GC) in a compact form by letting D = (P Q) and z = (x y)T

(hence, Dj+n = Qj and zj+n = yj), to yield the representation

Dz ≥ d

Then we introduce a nonnegative vector w of weights wi, to generate a surrogate
constraint

sz ≥ so

where s = wD and so = wd. (The surrogate constraint therefore results by weighting each
constraint Diz ≥ di by wi and summing.) The component constraints xj + yj = 1 of x + y =

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 5

e (and more particularly the associated inequalities −xj + −yj ≥ −1) will also be used to
create the final form of the surrogate constraint. As will soon be seen, the appropriate
weights in this case are evident and we do not need additional notation to represent
them.

3.1. Surrogate constraint uses for the SAT problem. Since the surrogate
constraint sz ≥ so is implied by the original system, any solution satisfying (GC) must
also satisfy the surrogate constraint. Assuming the weights for generating the constraint
can effectively capture the “combined influence” of the inequalities Diz ≥ di, then the
variable zj that provides the greatest contribution to satisfying sz ≥ so may also provide
the greatest contribution to satisfying Dz ≥ d. This statement is heuristic, but in practice
a variety of choices of weights often exist that support its general premise. Situations in
which several different key variables zj must be assigned a value of 1 to satisfy (GC), for
example, may be accompanied by the existence of different weightings that cause each
such zj in turn to appear the most important for satisfying the surrogate constraint—and
it is only necessary to identify one of these weightings to make a valid choice for
assigning a value to a variable. An illustration of this is provided shortly.

Superficially, it may be supposed that the variable zj with the largest coefficient sj in
the surrogate constraint sz ≥ so would provide the greatest contribution to satisfying this
constraint. However, the binary choice constraints must first be taken into account. Let j#

denote the index of the variable that is the complement of zj (hence j# = j + n if zj

corresponds to an element of x, and j# = j − n if zj corresponds to an element of y). Then
the binary choice constraint zj + zj# = 1 discloses that the relative contribution of zj is
not sj but sj − sj#, since selecting zj = 1 forgoes the opportunity of selecting zj# = 1.
Hence, by adopting such an opportunity cost criterion, we may judge the most attractive
variable zj to be one that maximizes the value of sj − sj#.

This analysis corresponds to using the inequalities −zj − zj# ≥ −1 to give the “final
form” of the surrogate constraint, where we choose a weight for each such inequality of
Min(sj, sj#). Then one of zj or zj# will have a coefficient equal to 0 and the other will have
a coefficient equal to the absolute value of sj − sj# in the resulting surrogate constraint.
Choosing the largest coefficient in this constraint corresponds to choosing a variable that
yields a maximum value of sj − sj# We will call this surrogate constraint (which has a
coefficient for each zj of sj − Min(sj, sj#)) a derived surrogate constraint.

AN EXAMPLE. We illustrate the preceding considerations by a system that consists
of 5 inequalities and 3 pairs of complementary variables: (z1,z4), (z2,z5) and (z3,z6). The
weight associated with each inequality is listed to its right, below. (Note that in such an
inequality system representing the (GC) formulation, complementary variables zj and zj#

cannot appear together in any inequality; i.e., the columns Dj and Dj# cannot have unit
coefficients in the same row.)

z1 + z2 ≥ 1 (w1)
z1 + z3 ≥ 1 (w2)

z2 + z3 ≥ 1 (w3)
 z4 + z5 ≥ 1 (w4)
 z1 + z6 ≥ 1 (w5)

LØKKETANGEN AND GLOVER6

We generate three surrogate constraints for this example, the first by setting all wi = 1
(which simply sums the preceding inequalities), the second by setting w2 = 1, w3 = 1 and
w4 = 1 (with other weights 0), and the third by setting w2 = 1, w4 = 2 and w5 = 1. These
constraints and their corresponding derived surrogate constraints are shown as follows:

3 z1 + 2z2 + 2z3 + z4 + z5 + z6 ≥ 5 (1)
z1 + z2 + 2z3 + z4 + z5 + z6 ≥ 3 (2)
2z1 + z3 + 2 z4 + 2 z5 + z6 ≥ 4 (3)

2 z1 + z2 + z3 ≥ 2 (1-derived)

z3 ≥ 1 (2-derived)
 2 z5 ≥ 1 (3-derived)

Surrogate constraints (1) and (2) each have a unique maximum coefficient, s1 = 3

and s3 = 2, respectively, which suggests that z1 and z3 may be good variables to receive a
value of 1. No clear choice of a “good variable” emerges from surrogate constraint (3).
On the other hand, a clear winner emerges in each of the three derived surrogate
constraints. In fact the second and third derived constraints demonstrate that z3 and z5

may be compelled to equal 1.
Although it can be valuable to identify compulsory possibilities, we will not

undertake to use surrogate constraints in the present setting to determine when variables
may be forced to receive a value of 1, but instead will focus on using these constraints to
provide information for making choices. This policy stems from two related reasons.
First, simple (if sometimes less powerful) tests exist for determining compulsory
assignments by reference to updated forms of the original inequalities of (GC). Second,
it can be somewhat time consuming to discover a surrogate constraint that yields a
compulsory assignment (assuming one can be found) -- and, more importantly from a
heuristic standpoint, a less restrictive constraint may yield information that is just as
good for determining when a variable should receive a particular value.

In the present illustration, for example, there exists a surrogate constraint that
discloses z1 is compelled to equal 1, which is the derivative of the surrogate constraint
obtained by setting w1 = 1, w2 = 1 and w5 = 2. The less restrictive surrogate constraint
(1) and its derived constraint, which do not yield this information, nevertheless identify
z1 as a preferred variable to select.

3.2 A specific choice rule. In combinatorial problems, subtle differences in
evaluations can sometimes have significant consequences, and therefore it can be useful
to construct several different surrogate constraints (by different weightings) and allow
them to “vote” on a preferred variable to set equal to 1. For purposes of speed we will
confine such a voting process only to the single surrogate constraint sz ≥ so and its
derived surrogate constraint, making the derived constraint the dominant partner. In
particular, we will select a maximum sj − sj# value (equivalently, a maximum sj −
Min(sj,sj#) value) and break ties in favor of larger sj values. This may be expressed as a
parameterized choice rule which chooses a variable zj to set to 1 that yields a maximum
of psj + (sj − sj#) where the parameter p is given a very small positive value. Hereafter
we will refer to this rule as the surrogate constraint choice rule. Since all the
information necessary for this choice is available from the single constraint sz ≥ so, we
will continue to speak of it as the surrogate constraint that guides our approach.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 7

Dominance Connections: -- We now motivate the surrogate constraint choice rule
more rigorously. If the binary choice constraints are eliminated, leaving the system Dz ≥
d subject only to z binary, the result is the set of constraints for a classical covering
problem. Since we are interested only in feasibility, without concern for an objective
function, a standard indication that a variable zj dominates another variable zh is Dj ≥ Dh,
which implies we may enforce zj ≥ zh. In addition, given the unit vector d, setting zj = 1
renders zh = 1 superfluous.

This type of dominance does not carry the same interpretation for the binary choice
covering formulation of (GC), and so we will refer to it as quasi-dominance. Instead, to
assure (full) dominance in (GC) we require the two conditions Dj ≥ Dh and Dj# ≤ Dh#. In
the context of (GC), these conditions allow us to conclude zj ≥ zh (and symmetrically,
 zh# ≥ zj#).

Naturally, it would be advantageous to identify quasi-dominance and dominance
when they occur. However, the effort of checking for such conditions is prohibitive,
particularly when repeated each time the system Dz ≥ d changes during a constructive
procedure (as a result of removing assigned variables and redundant constraints).
Fortunately, surrogate constraint analysis effectively makes it possible to avoid this
effort. That is, the existence of these dominance conditions automatically causes zj = 1 to
be preferentially selected over zh = 1 by relying on the surrogate constraint sz ≥ so and its
derived surrogate constraint to determine the choice. We state this result as follows.

REMARK 1. Quasi-dominance of zj over zh implies the coefficient condition sj ≥ sh

holds in the surrogate constraint sz ≥ so, and (full) dominance of zj over zh implies the
coefficient condition sj − sj# ≥ sh − sh# holds in the derived surrogate constraint. In
addition, if w > 0, the inequalities indicated for the surrogate constraint coefficients are
strict whenever the dominance conditions are nonreversible (i.e., do not allow zh to
dominate zj).

PROOF. Dj ≥ Dh implies wDj ≥ wDh for w ≥ 0, and also implies wDj > wDh if Dj ≠
Dh] and w > 0. The conclusions of the remark then result by applying the definitions for
generating the surrogate constraint coefficients.

Remark 1 shows that the surrogate constraint choice rule will choose zj = 1 in
preference to zh = 1 whenever dominance occurs, and will break ties to reflect the
influence of quasi-dominance. The result also readily generalizes to problems with
explicit objective functions. Of course, the choice rule also yields guidance in situations
where dominance does not occur.

3.3. Determining the Surrogate Constraint Weights. No matter how subtle the
choice rule, its effectiveness must ultimately depend on selecting surrogate constraint
weights appropriately. Methods for determining weights wi take several forms. We are
particularly interested in procedures that generate and update surrogate constraints
rapidly, and consequently we determine the weights by successive normalization.

Define ni = Die, where the vector e is understood here to be a 2n dimensional vector
of 1´s. For the SAT problem, ni is therefore the number of unit elements in the row
vector Di = (Pi Qi) (equivalently, the number of nonzero elements in the row vector Ai

for formulation (I)).
The successive normalization process then operates by the following two steps.

LØKKETANGEN AND GLOVER8

STEP 1. Make any (identifiable) compulsory or dominating assignments of values to
variables, and eliminate any constraints determined to be redundant or dominated.

STEP 2. Generate the surrogate constraint for the system that remains after applying
Step 1 by choosing wi to be an increasing function of di and a decreasing function of ni.

(For a system such as (MK), whose inequalities are expressed in “less than or equal
to” form, the words “increasing” and “decreasing” are interchanged in the conditions of
Step 2.)

The foregoing steps are applied iteratively in branch and bound methods and in
constructive and destructive heuristics such as those we subsequently identify. These
approaches update the system at each iteration to incorporate currently selected value
assignments as well as to reflect changes from compulsory assignments and eliminated
constraints.

In particular, we define a constructive process to be one that starts with all variables
“unassigned” (implicitly 0) and successively selects some variable zj to receive a value
of 1 (hence automatically assigning the complementary variable zj# an explicit value of
0). Variables currently assigned explicit values are removed from consideration and the
vector d is updated appropriately (by subtracting the sum of those columns Dj whose
associated variables zj equal 1).

Similarly, we define a destructive process as one that begins with all variables
“overassigned” (implicitly equal 1), and successively chooses some variable zj to equal 0
(hence automatically assigning its complementary variable an explicit value of 1). We
will not make use of a destructive process in the present study, but note its relevance to
strategic oscillation procedures that alternate between series of constructive and
destructive moves, which constitute one of the principal strategies for applying surrogate
constraint analysis. Our subsequent observations can be applied directly within strategic
oscillation procedures as well.

The following sections first describe how surrogate constraint analysis can be
embedded in a constructive procedure for generating advanced starts, and then show
how these ideas can be used to guide processes that interchange the values of
complementary variables. We then assemble a complete surrogate constraint method
from these components.

4. A constructive surrogate constraint procedure.
In common with other procedures described later, a constructive surrogate

constraint method for the SAT problem can operate without explicitly storing the matrix
D, since all information about its structure, both original and updated, can be maintained
by sets identifying its current nonzero (unit) elements and associated variables and
constraints. We represent these sets in their initial form by the following notation:

J = the index set of the variables zj: J = {1, ..., 2n}.
J(i) = the index set of variables zj that have unit coefficients in row Di of D:

 J(i) = {j: Dij = 1}. (Note that the cardinality of J(i) is ni.)
I = the index set of the rows Di of D: I = {1, ...,m}.
I(j) = the index set of rows Di that have unit coefficients for variable zj:

 I(j) = {i: Dij = 1}.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 9

As a constructive method progresses, variables are assigned explicit values and
constraints become redundant, causing these sets to alter their form. We refer to updated
(current) solution information by the following related notation:

J* = the index set of currently unassigned variables zj

 (hence j* ∈ J* implies j# ∈ J*).
J*(i) = the index set of unassigned variables zj with unit coefficients in row Di:

 J*(i) = J(i) ∩ J*.
 (Accordingly, we denote the cardinality of this set by n.)

z* = the current solution vector, where implicitly z = 0 for j ∈ J*.
d = the current value of di: d = di − Diz*. (Note Diz*= the number of

 elements j of J(i) such that zj = 1.)
I* = the index set of rows Di associated with currently nonredundant

 constraints: I* = {i: d = 1}.
I*(j) = the index set of nonredundant constraint rows that have a unit

 coefficient for zj: I*(j) = I(j) ∩ I*.

Each time an assignment zj* = 1 and zj#* = 0 is made, the set I* is updated by
deleting all elements of I*(j) (or equivalently all elements of I(j) in I*), since d becomes
reduced from 1 to 0 for precisely the elements of this set. At the same time, for each
element i of I*(j#), the element j# is deleted from J*(i), which correspondingly reduces
the value of n by 1. (Additional updates for i ∈ I − I* are unnecessary, since a constraint
that becomes redundant remains so thereafter during the constructive process.) Detailed
instructions for these updates are provided later.

4.1. Surrogate constraint generation: effective normalizations. The fundamental
issue is to identify the rules for generating and updating the surrogate constraint sz ≥ so.
Specifically, we are left to identify precisely how the weights wi are to be selected, and
how the changes in these weights can be efficiently reflected by associated changes in
the surrogate constraint coefficients. The issue is simplified for the constructive
approach, since only one (current) value of d is relevant, namely d = 1. Hence, following
the guidelines indicated earlier for determining weights by a successive normalization
procedure, we only need to choose a normalization that makes wi a decreasing function
of n (for i ∈ I*).

A customary normalization for surrogate constraints achieves this effect by setting
wi proportional to 1/n (where the factor of proportionality is determined by d). In the
present case, we consider multiple normalization possibilities for determining wi, as a
basis for generating an advanced start for each choice (and for providing a comparison
of outcomes). Since the “best” advanced start relative to reducing infeasibility may not
always be the one that leads most quickly to a solution that satisfies (GC) (if the
advanced start itself fails to provide such a solution), the use of multiple possibilities for
determining weights also serves as a strategy for a multistart method.

Consequently, we are motivated not simply to identify a good normalization but a
good collection of normalizations—a collection such that the advanced start generated
by one or more of its members will lead to a solution satisfying (GC) in a relatively short
time (where the meaning of “short” depends on the problem difficulty). Rather than
arbitrarily step through a range of parameter values to test alternative normalizations,
however, we begin with six basic normalizations and then construct new normalizations

LØKKETANGEN AND GLOVER10

from these by a learning approach. In this way we are able to go beyond the rules that
determine wi as a function of n (and d), and create modified weights based on the
outcomes of applying prior normalizations.

We first examine these basic normalizations and specify the constructive heuristic
based on them, and then indicate the learning approach that provides new
normalizations.

4.2 Basic normalizations. By extension of the usual normalization approach that
sets wi proportional to 1/n for a given d value, we will replace n by an increasing
(nondecreasing) function F(n), and set wi = M/F(n), where M represents the “factor of
proportionality” (a constant here, since we are only interested at the moment in the case
d = 1).

The six basic forms of F(n) we use are as follows:

F1(n) = 1
F2(n) = n
F3(n) = n(n + 1)/2
F4(n) = n2

F5(n) = n3

F6(n) = n4

(The value for F3(n) is the mean of F2(n) and F4(n).)
We segregate n = 1 as a special case due to the following observation.

REMARK 2. The condition n = 1 for i ∈ I* implies the compulsory assignment z = 1
and z# = 0 for j ∈ J*(i).

PROOF. The remark is immediate since n is the cardinality of J*(i), and hence the
inequality for the current row i has the form zj ≥ 1 where j is the unique element of J*(i).

After eliminating all compulsory assignments that arise by the condition of Remark
2 (and disposing of any implicitly violated constraints that result for n = 0), we may
restrict attention to the case n ≥ 2.

We will monitor the condition n = 1 in a way that implicitly assigns a “preemptively
large” weight wi to row i when this condition occurs in the constructive approach. The
reason for this is to allow compulsory assignments to be made in a strategically
preferred order, in situations where such assignments may not all be mutually
compatible. This is important to reduce the number of violated inequalities that result.
(This might have justified using n − 1 as a component of the preceding functions, but
will use n instead, as this will let us incorporate learning approaches in the selection
between compulsory approaches, as well as letting us be able to handle single literal
clauses in the improvement heuristics in a straightforward manner, using the same
normalization functions.)

The preceding functions are illustrated in the following table.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 11

The numerator M can be chosen so that all the weights wi will yield distinct integer
values, thus enabling faster integer arithmetic on the weights. This study will use
floating point weights (due to easier monitoring of learning effects), and consequently a
value of M = 1.

4.3. Surrogate constraint updating. Once the original surrogate constraint is
generated, we are concerned with identifying a procedure for updating it efficiently. To
be comprehensive, we will indicate complete subroutines to initiate and update all data
structures for a constructive surrogate constraint approach, since these operations are
intimately tied together with the operations of updating the surrogate constraint itself.
On this basis we will then be able to summarize the steps of the constructive method in a
succinct form.

As previously noted, we handle the special condition n = 1 separately in the
surrogate constraint update, since it yields a compulsory assignment -- and such
assignments must be performed in a judicious sequence (likewise governed by surrogate
constraint information) in order to reduce constraint violations that may occur, in case
these assignments are not mutually compatible. For this purpose, we maintain an array tj

in addition to the surrogate constraint coefficient array sj, where tj records the surrogate
constraint coefficient of zj that applies only to the compulsory inequalities zj ≥ 1 -- that
is, we just sum these inequalities (since they all have the same n value, n = 1) to give the
coefficient tj. (We will the weights w for these singular clauses instead, to be able to
incorporate learning effects. Recall that initially (without learning) these weights are all
equal to 1).

The “complete” surrogate constraint coefficient that results in the presence of these
compulsory inequalities thus may be viewed as obtained by preemptively weighting tj

and adding it to sj. Since this is only relevant when n = 1 occurs -- a condition that must
be checked for anyway -- the computation of maintaining tj is trivial. Accompanying the
use of tj we maintain a list JT*, which identifies those elements of J* such that tj > 0.

We assume that ni > 0 holds initially for all i ∈ I, or else the problem begins with an
unsatisfiable constraint. We also refer to elements of J, J* and JT* by the index h, to
avoid confusion with the particular index j such that a variable zj is selected to receive a
value of 1.

4.4. Initializing and updating routines. The various routines to handle the
surrogate constraint maintenance are as follows:

INITIALIZATION ROUTINE:
Set I* = I, J* = J, J*(i) = J(i) for all i ∈ I, I*(h) = I(h) for all h ∈ J.
Set sh = 0 and th = 0 for all h ∈ J.
Initialize the index set V of violated constraints and the index set JT* to be

ni* 1 2 3 4 5 6 7 8
F1 1 1 1 1 1 1 1 1
F2 1 2 3 4 5 6 7 8
F3 1 3 6 10 15 21 28 36
F4 1 4 9 16 25 36 49 64
F5 1 8 27 64 125 218 243 512
F6 1 16 81 256 625 1308 2401 4096

LØKKETANGEN AND GLOVER12

empty.
Then, for each i ∈ I*:

- set d = di (= 1) and n = ni (the cardinality of J(i)).
- Set wi = M/F(ni*)
- if n > 1, then for each h ∈ J*(i), set sh = sh + wi

- if n = 1, for the unique h ∈ J*(i), set th = th + wi, and add h to JT* if
 th = 1

SURROGATE CONSTRAINT UPDATE ROUTINE:
(After each assignment zj = 1 and z# = 0):
Delete j and j# from J*
For each i ∈ I*(j):

(d changes from 1 to 0, and constraint i is eliminated)
- delete i from I*
- delete j from J*(i)
- for each h ∈ J*(i), set sh = sh − wi

For each i ∈ I*(j#):
(d is unchanged, but J*(i) shrinks)
- delete j# from J*(i)
- set ni* = ni* − 1
- if ni* = 0, delete i from I* and add i to V
- Identify the new wi value v = M/F(ni*)
- Let Δ = v − wi and update wi = v
- if ni* = 1, for the unique h ∈ J*(i) set sh = sh − wi, set th = th + wi,
 and add h to JT* if th = 1
- if ni* > 1, then, for each h ∈ J*(i), set sh = sh + Δ

ALTERNATIVE UPDATE ROUTINE: Recompute the surrogate constraint from scratch.
Delete j and j# from J*
Set sh = 0 for all j ∈ J*
Delete each i ∈ I*(j) from I*
For each i ∈ I*(j#):

- delete j# from J*(i)
- set ni* = ni* − 1
- if ni* = 0, delete i from I* and add i to V
- Identify the current value of wi = M/F(ni*)
- if ni* = 1, for the unique h ∈ J*(i), set th = th + wi, and add h to JT* if
 th = 1.
- if ni* > 1 then for each h ∈ J*(i), set sh = sh + wi

Note, the uses we make of the surrogate constraint in the present setting do not
require explicit knowledge of so, and so we do not refer to it in the preceding updates. Its
value can be computed simply by adding the instruction “so: = so + change” at each place
where “sh = sh + change” occurs. Also note that the test for th = 1 in the preceding
surrogate constraint update routines really means if this is the first time this condition
(that variable h is forced) is encountered, and the appropriate set updates must be made.

To achieve the greatest efficiency, the operation of updating the surrogate constraint
will normally be somewhat faster than recomputing it from scratch, since (assuming

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 13

sparsity) the union of the sets I*(j) and I*(j#) will typically be smaller than the set
I* − I*(j), except perhaps in final iterations of the method.

A final observation sets the stage for specifying the constructive surrogate
constraint approach in detail.

REMARK 3. Whenever sj = 0 for some j ∈ J*, the assignment zj* = 0 and zj#* = 1
may be made without changing the set of feasible assignments for remaining unassigned
variables.

PROOF. The indicated assignment is justified by domination, noting that the use of
positive weights assures that sj = 0 implies Dij = 0 for all i ∈ I*, and hence there is no
loss in setting z = 0.

The observation of Remark 3 is applied immediately after disposing of compulsory
assignments that result from the condition n = 1, at the beginning of each iteration of a
constructive approach. (Since the updates previously specified are based on the
assignment zj* = 1 and zj#* = 0, the indexes j and j# of Remark 3 must be interchanged
for the purpose of these updating operations.) We note the surrogate constraint choice
rule must be performed to take the positive entries of tj into account when such
compulsory assignments arise (signalled by JT* not empty). Thus we apply the surrogate
constraint choice rule first to isolate elements j of JT* that yield a maximum value of tj −
tj# breaking ties in favor of larger tj values. (The tj# value will be 0, and hence j# will not
belong to JT*, unless there is a conflict that must result in violating a constraint. Such
conflicts, existing and potential, are the reason for choosing the sequence of compulsory
assignments with care.)

Ties may normally be expected among the best elements identified, and these will
be settled by applying the usual form of the surrogate constraint choice rule (by
reference to the coefficients sj instead of tj), thereby determining the variable zj selected.
(Such tie breaking is important, and should not be left to simple randomization except to
dispose of ties at the “lowest level.”) Upon setting zj* = 1 and zj#* = 0, the updating
operations are performed as customary before again examining JT*.

We now state the method that results from the foregoing observations.

CONSTRUCTIVE METHOD FOR (GC).
0. Initialize I*, J*, etc., as previously specified. Each time an assignment is

performed, update (or recompute) the surrogate constraint.
1. If I* is empty, or becomes empty at any point during this step,

go to step 3.
(A) If JT* is not empty, apply the surrogate constraint choice rule

to select j from JT*, and set zj* = 1 and zj#* = 0, removing j
from JT* and also removing j# if it belongs to JT*.
Repeat (A) as long as JT* is not empty (updating the problem
arrays and the surrogate constraint after each assignment).

(B) In the current surrogate constraint, if sj = 0 for some j ∈ J*,
set zj* = 0 and zj#* = 1 (breaking “ties” arbitrarily where both
sj = 0 and sj# = 0), and return to the start of Step 1 after all
such assignments are made. Otherwise, if the condition of (B)
does not hold, continue to step 2.

LØKKETANGEN AND GLOVER14

2. Apply the surrogate constraint choice rule to select an unassigned
variable zj, j ∈ J*, and make the assignment zj* = 1 and zj#* = 0.
Then return to step 1.

3. (I* is empty.) If J* is not empty, set zj* = 1 and zj#* = 0 arbitrarily for
remaining pairs of unassigned variables. If V is empty, the satisfiability
problem is solved; otherwise, V identifies the constraints violated by the
trial solution z*.

5. Improvement method.
To use surrogate constraint analysis to guide an improvement method, we must

slightly redesign the steps to handle moves that exchange values of variables -- i.e.,
moves that replace an assignment zj* = 1 and zj#* = 0 by the reverse assignment zj* = 0
and zj#* = 1. We let J0 and J1 respectively denote the indexed sets of variables assigned
the values 0 and 1, and assume the instructions given in the Appendix are used in the
constructive approach to partition the sets J(i), i ∈ I, into the component sets
J0(i) = {j ∈ J(i): z = 0} and J1(i) = {j ∈ J(i): z = 1}. These instructions also give rules
for updating these sets in the improvement approach we now describe.

To remain consistent with the notation of the constructive approach, we continue to
express the goal of each step as that of identifying a best assignment of the form zj* = 1
and zj#* = 0. Thus we view the current solution z* as represented by pairs
(j, j#) for j ∈ J0 (corresponding to zj* = 0 and zj#* = 1).

We are concerned primarily with three main issues: (1) generating and updating the
surrogate constraint, (2) selecting a “best move” by reference to the surrogate constraint,
(3) using learning processes to create improved surrogate constraints over time, and to
refine and diversify the move selection process.

5.1 Surrogate constraint generation and updating. Since the sets J, I, J(i) and
I(j) are not progressively reduced in the improvement procedure, as they are in the
constructive procedure, we maintain them in their original form. Similarly, we do not
replace ni by n, but keep ni at its original value.

We add a new consideration in the improvement approach by seeking to account for
the influence of a larger number of component constraints in generating the surrogate
constraint. Specifically, we still retain reference to the updated d value (= di − Diz*),
where d = 1 is the signal that the inequality Diz ≥ di is violated by the current solution
z = z*. However, instead of restricting attention only to the inequalities with d = 1 as a
basis for generating the surrogate constraint, we include the option of incorporating
“nearly violated” inequalities that yield d = 0 and d = −1.

The inequalities for d = 0 and d = −1 should receive significantly smaller weights
than those for d = 1 (particularly for equal values of ni), and we handle this by
subdividing the surrogate constraint into corresponding components. In particular, we
continue to let sz ≥ so denote the surrogate constraint (component) generated from
inequalities for which d = 1, and additionally let s´z ≥ so´ and s´´z ≥ so´´ denote the
surrogate constraint components generated for d = 0 and d = −1, respectively. Likewise,
we let w´ and w´´ denote the weight vectors for these components. (In this way, we avoid
explicitly using weights that assure w >> w´ >> w´, but simply use the coefficients of s´z
≥ so´ and s´´z ≥ so´´, in turn, to resolve ties created by the choice rules applied to sz ≥ so.)

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 15

5.2. Surrogate constraint coefficients for exchange moves. Exchange moves can
be evaluated efficiently by slightly modifying the way surrogate constraint coefficients
are generated. To evaluate an exchange that replaces the assignment zj* = 0 and zj#* = 1
by the reverse assignment zj* = 1 and zj#* = 0, it is necessary first to “undo” the half-
assignment zj#* = 1, thereby restoring the implicit assignment zj* = 0 and zj#* = 0 which
forms the basis for the evaluation rules of the preceding sections. Fortunately, it is
unnecessary to introduce an extra step to accomplish this restoration. Instead, we
maintain a mixed surrogate constraint, which does not alter the coefficient sj

(corresponding to zj* = 0), but modifies the coefficient sj# (corresponding to zj#* = 1) to
take the value it would receive if instead zj#* = 0. This is done for each such sj#

coefficient independently, since our analysis requires the assumption that only a single
zj#* value changes from 1 to 0, while the other values remain unchanged.

To accomplish this, we observe that changing zj#* from 1 to 0 causes the vector d*
to be replaced by the vector d* + Dj#; that is, d is replaced by d + 1 for i ∈ I(j#). Thus,
the “adjusted” surrogate constraint coefficient for sj# is generated simply by using the
weights wi that apply under the assumption that d is 1 larger than its current value for i ∈
I(j#). Again letting the index h represent a general element of J (differentiated from the
index j ∈ J0 of the current assignment zj* = 0 and zj#* = 1), the rules to initialize and
update the surrogate constraint components are as follows. (The weight wi in each case
is assumed as before to be given by wi = M/F(ni), where w´ and w´´ are given by
replacing M and F by M´ and F´, and by M´´ and F´´, respectively.)

INITIALIZATION ROUTINE:
Begin with sh, sh´ and sh´´ = 0 for h ∈ J.
For i ∈ I:

If d = 1: For h ∈ J0(i): set sh = sh + wi

If d = 0: For h ∈ J1(i): set sh = sh + wi

For h ∈ J0(i): set sh´ = sh´ + wi´
If d = −1: For h ∈ J1(i): set sh´ = sh´ + wi´

For h ∈ J0(i): set sh´´ = sh´´ + wi´´
If d = −2: For h ∈ J1(i): set sh´´ = sh´´ + wi´´

The update of the surrogate constraints after each new assignment is made can be
done incrementally, similarly to the update in the constructive case. However, with the
addition of learning effects (see Section 6), these calculations can become quite messy,
and we use the initialization routine above for updating the weights as well.

We observe several things about these operations. First, if attention is restricted
only to the surrogate constraint component sz ≥ so the amount of updating is significantly
reduced. The updating can also be considerably reduced by dropping reference to
s´´z ≥ so´´ and by choosing M´ “relatively small” so that the maximum wi´ value is not
large. Then, making M moderately larger than its usual value can assure that the wi

values dominate the wi‘ values, allowing the component constraint s´z ≥ so´ to be
embedded directly within sz ≥ so. A goal of our computational testing is to explore the
tradeoffs in “speed versus information” by incorporating surrogate constraint
components at different levels.

5.3 Significance of the mixed surrogate constraint evaluation. The mixed
surrogate constraint evaluation that is incorporated into the preceding updates allows an

LØKKETANGEN AND GLOVER16

exchange move to have the same basis of evaluation as a constructive move. Although
the analysis is straightforward in the context of the (GC) formulation, it is less apparent
in the context of the (I) formulation. Relative to the inequality system Ax ≥ b of (I), the
evaluation implies that the negative coefficients of A are treated differently than the
positive coefficients of A in generating appropriate surrogate constraint weights. This
seems at first counter to the definition of a surrogate constraint, but in fact it results from
the fact that an exchange move implicitly requires reference to multiple surrogate
constraints -- the surrogate constraint that applies to the current solution, and an
additional surrogate constraint for each zj# such that zj#* = 1, where the constraint results
by setting zj#* = 0. The useful consequence of our analysis is that we may generate
appropriate coefficients for all cases with essentially the same effort as required to
generate coefficients for a single surrogate constraint. While entirely natural relative to
the (GC) formulation, the analysis becomes somewhat convoluted relative to the (I)
formulation. This shows how alternative equivalent formulations can sometimes be
useful for developing useful insights.

5.4. Explicit form of the choice rules. We use exactly the same surrogate
constraint choice rule as in the constructive approach for evaluating and selecting a
preferred move, based on identifying a variable zj that maximizes the value (1+p)sj − sj#

where p receives a small positive value as a “first level tie breaker.” However, when w´
and w´´ are used (or just w´ by itself) to extend the surrogate constraint, we incorporate
the variant that displaces the tie breaking use of p to a lower decision level. In this
variant, we first seek a maximum value of sj − sj# then resolve ties from a maximum
value of sj´ − sj#´, and finally (when w´´ is included) from a maximum value of sj´´ − sj#´´.
Only in the rare event that ties are not resolved in this manner do we include reference to
the maximum sj value (implicitly incorporating a very small value of p). When sj´ is
embedded in sj, of course, as in the previous modified update routine, the original choice
rule applies without change. (Following standard procedure, ties that are not broken
otherwise are broken randomly.)

In each of these cases, the index j is restricted to j ∈ J0, since we only allow choices
that change a current assignment. It is possible that a current best choice has a zero or
negative evaluation, but this is not cause for rejecting it.

6. Learning and multiple starts.
As previously noted, the advanced starting solutions generated by the constructive

procedure can be used as the basis for a multistart method. One way to generate a
variety of solutions, in addition to those that result from the six basic normalizations, is
to include additional normalizations (as by taking various convex combinations of the
functions F1 through F6), and by selecting different values for the parameter p of the
surrogate constraint choice rule (instead of choosing p small).

The alternative we propose instead is to use the knowledge of the index set V of
violated constraints as a basis for learning appropriate changes in the weights wi -- i.e.,
changes designed to generate new solutions that differ from previous ones, and that are
more likely to satisfy previously violated constraints. For this purpose if we simply
assigned dominant weights wi for i in V, then a new constructive solution pass would
devote its first steps to satisfying the constraints violated on the previous pass, assuring
the two successive solutions would be different. We seek to modify the weights wi for i
in V in a more judicious fashion, in order to maintain the influence of the normalization

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 17

functions. In addition, we modify the weights in a way that assures the effect of previous
modifications is not lost, so that the learning component is not myopically determined
by the solution obtained immediately before the current one. Similar considerations can
be made for learning in the improvement procedure.

6.1. Learning in the constructive procedure. We propose a design based on
introducing a modification factor f(i) for each constraint i ∈ I. Then, instead of setting wi

= M/F(ni*), we set wi = f(i)M/F(ni*). This embodies an implicit combination of
frequency based and recency based memory, as customarily used in tabu search. This
straightforward design entails no added computational effort for updating the surrogate
constraint after the assignment zj* = 1 and zj#* = 0, other than to introduce (at most) two
multiplications for each i ∈ I*. In addition, a variety of strategies can conveniently exert
their influence by this design, using a simple rule to progressively modify f(i) itself,
which we describe as follows.

To begin, we set f(i) = 1 for all i ∈ I, so that wi receives its usual value on the first
constructive solution pass. Then we update f(i) on successive passes by introducing a
multiplier v(i) and making an assignment: f(i) = v(i)f(i). A natural implementation of this
model is to select v(i) = 1 if constraint i is not currently violated, and v(i) > 1 otherwise.
By this means, a constraint that is violated on a given pass will receive an “enduring
bias” to be satisfied on subsequent passes, so that the learning process does not
completely disregard the outcomes of previous construction attempts. Moreover, a
constraint that is repeatedly violated gradually receives more and more emphasis until it
effectively achieves a top priority for being satisfied. We use a rule for applying this
approach based on choosing two parameters, a value vo which gives the starting value
assigned to v(i) when constraint i is violated, and a value Δv which successively
modifies the value assigned to v(i). The explicit form of the rule, including the
associated determination of weights, is as follows.

MULTIPLIER UPDATE LEARNING RULE (CONSTRUCTIVE PROCEDURE):
0. Initially set f(i) = 1 for i ∈ I and set v = vo.
1. For the current pass, define wi = f(i)M/F(ni*) for i ∈ I*.
2. At the end of each pass, set v(i) = 1 for i ∈ I − V, v(i) = v for i ∈ V, and

f(i) = v(i) f(i) for all i ∈ I.
Then, set v = v + Δv, and return to 1 for the next pass.

The special instance of this rule that sets Δv = 0, and hence always assigns v(i) the
value vo for i in V evidently embodies a form of frequency based memory that gives a
uniform bias to satisfying constraints that have been violated the same number of times.
For example, for the choice vo = 2, the initial wi value is changed to become twice as
large for a constraint that has been violated on one pass, four times as large for a
constraint violated on two passes, and so forth. (The effect is subtler than this, because
the value of wi also changes as n changes. The multiplier effect holds constant across a
given value of n.) The choice vo = 2 thus provides a relatively strong impetus to satisfy a
constraint previously violated, and especially a constraint that is violated more than
once.

The variant that maintains Δv = 0 has a potential shortcoming, however. The use of
a uniform bias for frequency can allow a scenario in which, for example, the first third
of the constraints are violated on the first pass, then (precisely) the next third of the

LØKKETANGEN AND GLOVER18

constraints are violated on the second pass, and finally the last third of the constraints
are violated on the third pass. At the end of the third pass the factor f(i) which has been
updated by f(i) = v(i) f(i) after each pass will now have the same value for all constraints
i ∈ I, and so the approach will cause the fourth pass to give the same solution as on the
first -- continuing to cycle every three passes. Such a scenario is not highly probable
(since it would be rare to obtain a starting solution that allowed fully a third of the
constraints to be violated, and other interactions would likely rule out such an
elementary type of cycling), but the uniform frequency bias nevertheless can create
periodicities that may undermine progress toward a goal of satisfying increased numbers
of constraints (which at least loosely is one of the goals we consider desirable to
achieve).

Consequently, the incrementing parameter Δv is included to overcome this potential
pitfall, which it achieves by introducing a recency based element into the learning
process to complement the frequency based element. As time goes on, a positive Δv
value progressively increases the value v to be assigned to the multiplier v(i) when
constraint i is violated. (Equivalently, we could let v stay unchanged, and let old f(i)
values diminish, but this would require considerably more computation for updating.) As
a result, a constraint violated on pass k + 1 receives a higher bias for being satisfied on
the next pass than one violated on pass k. Ideally, such a rule might include a short term
memory design that “forgets” (or greatly reduces) earlier biases after a sufficient span of
time, to introduce a thresholding effect. The integration of frequency based and recency
based memory over short term and longer term horizons represents a first order
approximation to more advanced strategies in tabu search, which is convenient for study
because it relies solely on the parameter v.

Just as there is a potential danger if frequency is allowed to be uniform, inversely
there is a potential danger if recency is allowed to become too strongly skewed. In
particular, if the increment Δv is made too large, then we encounter a situation where the
outcome of the immediately preceding pass dominates all prior outcomes, which can
cause an erratically zigzagging change in successive solutions that invites short term
cycling. On the other hand, if the increment is selected too small, the outcome will
scarcely be differentiable from that of uniform frequency.

6.2. Learning in the improvement procedure. As with the constructive method,
we are concerned with modifying surrogate constraint weights based on learning. Quite
simply, by direct extension of our earlier approach, we seek to increase the weights for
constraints that are more often violated, taking frequency and recency considerations
into account. Within the setting of an improvement procedure, we speculate that
frequency becomes somewhat more important than recency and consequently we will
organize the learning process around the use of frequency measures.

Let SUM be the number of violated constraints on a given iteration. We can then use
the following rule to update the weights for the currently violated constraints.

WEIGHT UPDATE LEARNING RULE (IMPROVEMENT PROCEDURE):
Let Δw = q/SUM
For each i ∈ V.

Set wi = wi + Δw

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 19

Instead of using SUM in the denominator for forming Δw above, one might use
SUM2 (dampening the effect) or 1 (amplifying the effect). The value of q determines the
overall effect assigned to the learning.

The intuition that constraints that are violated more often should receive larger
weights is reinforced by considering the effect of constraint dominance. Note that in the
(GC) formulation for the SAT problem, where di = 1 for all i, we can say that constraint i
dominates constraint k if Di ≤ Dk. In such a case, constraint k can be effectively treated
as redundant and eliminated from consideration.

As in the corresponding conditions for a variable to dominate another, the effort of
checking for constraint dominance may be more than is worthwhile to invest. In
addition, there can be conditions of “almost dominance” that may be desirable to
account for, as an approximate indicator of the weights that should be assigned to
different constraints. The conditions require even greater work to identify.

The surrogate constraint normalization that assigns wi a larger weight for a smaller
ni value already implicitly will give greater emphasis to dominating constraints than to
dominated constraints. Adding in the Δw values for the violated constraints, which gives
a measure of the frequency of violation, allows us to magnify this emphasis in the proper
direction.

REMARK 4. If constraint Diz ≥ di dominates constraint Dkz ≥ dk, then qi ≥ qk holds
over every subset of iterations that qi and qk are both updated.

PROOF. The result is a simple consequence of the fact that a violation of Dkz ≥ dk

will assure a violation of Diz ≥ di, while the reverse is not true.

Remark 4 discloses how frequency measures are useful for reflecting the influence
of dominance and “almost-dominance”. We observe that the remark also holds in the
more general case where qi and qk are not simply incremented by 1 when their associated
constraints are violated, but where they may be incremented by a variable amount (as
long as the increment is the same for each term on any given iteration). This allows a
recency element to be incorporated, by which the increment gradually increases over
time. By this means, if the search leaves a region where particular constraints have
tended to be violated, the relative emphasis on these constraints can be diminished more
significantly than by relying on a uniform increment at each iteration. (A “time
threshold,” as often used in recency based memory in tabu search, allows a further
discounting of the past.)

7. Probabilistic tabu search
As sometimes noted in the tabu search literature, “controlled randomization” (which

uses the biases of probability) may be viewed as a substitute for memory -- when we are
ignorant of how memory should advantageously be used. But just as there are multiple
kinds of memory that can supplement each other, probabilities may find their best uses
in various supplementary roles. The ideas that are tested in this paper originate in part
from Glover (1989), and have been extensively tested in Løkketangen and Glover
(1995).

For clarification, since more than one interpretation is possible, what is generally
regarded as probabilistic tabu search is usually applied to the move acceptance function.
Among conjectures for why these probabilistic measures may work better than the

LØKKETANGEN AND GLOVER20

deterministic analog, one may guess that move evaluations have a certain “noise level”
that causes them to be imperfect -- so that a “best evaluation” may not correspond to a
“best move”. Yet the imperfection is not complete, or else there would be no need to
consider evaluations at all (except perhaps from a thoroughly local standpoint -- noting
the use of memory takes the evaluations beyond such a local context). The issue then is
to find a way to assign probabilities that somehow compensates for the noise level.

One may also view controlled randomization as a means for obtaining diversity
without reliance on memory. In this respect it represents a gain in efficiency by avoiding
the overhead otherwise incurred in the use of long term memory. However, it also
implies a loss of efficiency as potentially unproductive wanderings and duplications may
occur, that a more systematic approach would seek to eliminate.

A method like GSAT also relies on the use of randomization to obtain this
diversification effect (See Selman et. al. 1992). The use here is more implicit, and relies
on the plateaus in the move evaluations, when using the change in the number of
satisfied clauses as move evaluations.

Simulated Annealing (SA) also uses probabilistic measures for move acceptance,
but in a significantly different way than they are used by TS. SA samples the
neighborhood (typically randomly) by a design that accepts any improving move
encountered, and that accepts nonimproving moves with a decreasing probability as the
search progresses. By contrast, PTS creates a strategically composed candidate list of
moves (sorted by some measure of goodness) and uses a biased probability to select
from this list, with the first move on the list (i.e. the move that is considered best
according to some criterion) having the greatest chance for being selected. This
selection is done after the usual tabu restrictions and aspiration criteria have been
applied. PTS is thus much more aggressive, and gives more guidance to the search
process. For a general description of SA, see Dowsland (1993), while Connolly (1994)
describes the use of SA as a general search tool component for pure ILP problems.

Hart and Shogan (1987) describes the use of probabilistic measures for move
selection in greedy heuristics. Here the move is selected with uniform probability either
among the n best moves, or among the moves better than some threshold (compared to
the best move), but only considering improving moves.

7.1. Probabilistic tabu search for surrogate constraints. To be able to apply the
general probabilistic move acceptance approach as outlined in the previous section, we
seek a move evaluation function that in some way reflects the true merit of all the moves
in the candidate list. Usually this is based on mapping the move evaluations into positive
weights, and using these weights to obtain probabilities by dividing by the sum of the
weights, where the highest evaluations receive weights that disproportionately favor
their selection.

The use of surrogate constraints to guide the search gives a larger range of move
evaluations than customarily used for SAT problems, and consequently fewer moves tie
for first place in the sorted candidate list. The inclusion of learning effects amplifies this
trend. As the only diversification present in our surrogate constraint procedures relies on
“equal best moves”, the inclusion of more sophisticated move evaluations reduces this
diversifying effect. The notion of PTS is therefore added to be able to increase the
diversification of the search, but by measures making it more controllable than just
relying on plateaus in the move evaluation function.

Our surrogate constraint move evaluation function for the improvement procedure
contains three levels of surrogate constraint coefficients for each variable (see Section

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 21

5.2). It is therefore difficult to assign a good comparable numerical measure which
reflects the true merit of all the moves. However, based on the dominance arguments put
forth in previous sections, there is good reason to believe that the relative ranking of the
moves in the candidate list is quite good, and that a move should be selected among the
first few in the candidate list, if possible.

We therefore propose to introduce controlled randomization in the move selection
process by exponentially decreasing the move acceptance probability when traversing
the candidate list, thus relying solely on the individual move rankings, and not using the
actual move evaluations.

7.2. Exponentially decreasing move acceptance. The basis for this approach is
that we regard the relative ranking of the moves on the candidate list to be a good
approximation to their true merit.

The general outline of the method is as follows. Let p be the probability threshold
for acceptance of a move, and let r be a randomly generated number (both in the range
0 −1). Only the basic move selection core of the method is shown.

EXPONENTIALLY DECREASING MOVE ACCEPTANCE:
0. Generate the candidate list in the usual way.
1. Take the first (potentially best) move from the candidate list.
2. Generate r.

If r > p, reject. Goto Step 3.
If r ≤ p, accept move, exit.

 3. Select the next move on the candidate list. Goto Step 2.

If all acceptable moves are rejected, select the move randomly among all
candidates.

 The method is intriguing because of its simplicity. The value of p should not be too
small, as we would usually like to usually select one of the top few moves. Testing will
show good values for p, but as an example, consider p = 1/3. The probability of
selecting each of the first d moves is then:

1/3, 2/9, 4/27, 8/81, ..., 2d-1/3d .

The probability of not choosing one of the first d moves is 2d/3d, so p = 1/3 gives a
very high probability of picking one of the top moves: about .87 for picking one of the
top 5, and about .98 for picking one of the top 10.

The effective value of p can also be viewed as a function of the quality of the move
evaluation function. The better the move evaluation function, the higher the expected
value of p for which the best solutions are obtained.

8. Relation to other approaches.
If, for the surrogate constraint improvement procedure (see Section 5) we restrict

attention only to the surrogate constraint component sz ≥ so based on w, without
reference to components based on w´ and w´´, an interesting connection to some
previous approaches can be developed. To do this, we must additionally restrict
attention to the normalization based on the “uniform weighting function” F1 (which
gives F1(ni) = 1 for all i, see Section 4.2). Then, as previously observed, we can simply

LØKKETANGEN AND GLOVER22

choose the scaling factor M = 1, and it is easy to show that the surrogate constraint
coefficients sj and sj# respectively count the number of violated constraints that would be
satisfied by setting zj* = 1, and the number of satisfied constraints that would be violated
by setting zj#* = 0. Thus the coefficient sj − sj# of the derived surrogate constraint
corresponds to the “net improvement” (or disimprovement) in the number of satisfied
constraints that results by reversing the current assignment zj* = 0 and zj#* = 1.

This simple counting function corresponds to the choice rule used in the GSAT
procedure of Selman, Levesque and Mitchell (1992), and is also embodied in the more
recent random walk enhancement of GSAT by Selman, Kantz and Cohen (1995). In this
respect, some of the choice rules that are currently popular for solving SAT problems
share common ground with rules that result from a special instance of surrogate
constraint analysis. On the other hand, surrogate constraint analysis provides a much
wider range of options (resulting from different weights and choice rules over different
ranges of constraints), and bases these options on a framework for capturing useful
information from the problem constraints. In the mathematical optimization setting, this
framework provides a duality theory that further motivates its application. (See, e.g.,
Glover (1965, 1975), Greenberg and Pierskalla (1970, 1973), Freville and Plateau
(1993).)

9. Computational testing.
To test our heuristic, we used the same test-cases from the aim-* and jnh* group as

used by Resende and Feo (1994), both groups being in the test case portfolio of the 2nd
DIMACS Challenge on Satisfiability Problems. The instance class aim-*, submitted by
E. Miyano, are artificially generated 3-SAT problems, with the property that each
instance has at most one satisfiable truth assignment. The problems in jnh*, submitted
by John Hooker, are random instances, generated to be difficult by rejecting unit clauses
and setting the density to a hard value.

In addition we tested our procedures on some structured real world problems from
the areas of asynchronous circuit synthesis and technology mapping (mapping the gate
level circuit into an implementation using standard cell library) submitted by Jun Gu to
the DIMACS Workshop on the Satisfiability Problem: Theory and Applications, with
class names as* and tm*

Our test code is implemented in C++, running on a 75 Mhz Pentium PC under
Windows. The code is highly experimental, designed to more easily focus on the
behavior of the search process, as suggested by Hooker (1996). We have not sought to
streamline our code for speed. As a comparison, one iteration of the constructive phase
takes about 10 times the amount of time used by an iteration requiring a similar level of
computation in GRASP, as reported in Resende and Feo (1994).

9.1. Tests of constructive methods. A key question is which normalization strategy
is generally most effective at reducing V (the set of violated inequalities)? It should be
noted that the normalization based on F1, which yields wi = 1 for all i with d = 1, leads
to a rule of reducing V by a maximum amount at each step if a maximum sj value is the
basis of choice. Similarly, it leads to a rule of reducing V by a maximum “opportunity
cost” amount at each step if a maximum sj − sj* value is the basis of choice. Thus, F1
yields rules that are directly designed for the objective of reducing V. (This simple
counting normalization also is the basis of the constructive heuristic of Chvtal (1979) for
covering problems. As previously noted, in the setting of improvement methods, F1 also

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 23

yields rules that correspond to those proposed more recently in currently popular SAT
methods.)

However, in spite of its direct link with the objective of reducing V, this function
may not be the one that actually succeeds in reducing V the most. Surrogate constraint
analysis in fact suggests that the other F’s (F2 to F6) are likely to yield somewhat better
outcomes, though this would seem counterintuitive from a traditional orientation (since
it suggests that using a “wrong” objective function is better than using the “right” one).
Consequently, it is of interest to determine the effect on V created by the choice of
normalizations.

Table I shows the size of V for the different F’s for the aim problem class. A modest
100 iterations were run for each case. Recall that the only diversification employed is
the random selection between the equal top contenders of the candidate list. Entries
marked with an asterix indicate that the optimum was found within 100 iterations in an
ensuing improvement phase. Thus, in this case we are simply using the constructive part

Table I. V versus F for aim*. Constructive procedure. No learning.

Name F1 F2 F3 F4 F5 F6
aim-50-1_6_yes1-1 1 1 1 1 1 1
aim-50-1_6_yes1-2 1 1 0 1 1 1
aim-50-1_6_yes1-3 1 1 1 0 0 0
aim-50-1_6_yes1-4 1 1 1 1 1 1
aim-50-2_0_yes1-1 2 1 1 1 1 1
aim-50-2_0_yes1-2 2 1 1 1 1 1
aim-50-2_0_yes1-3 2 1 1 1 1 1
aim-50-2_0_yes1-4 3 1 0 0 0 0
aim-50-3_4_yes1-1 9 3 2 1 2 2
aim-50-3_4_yes1-2 10 2 1* 1* 1* 1*
aim-50-3_4_yes1-3 11 2 3* 3 3 3
aim-50-3_4_yes1-4 12 3 3 3 3 3
aim-50-6_0_yes1-1 20* 2* 0 0 0 0
aim-50-6_0_yes1-2 24* 0 0 0 0 0
aim-50-6_0_yes1-3 23* 0 0 0 0 0
aim-50-6_0_yes1-4 22* 0 0 0 0 0
aim-100-1_6_yes1-1 2 1 1 2 2 2
aim-100-1_6_yes1-2 3 1 1 1 1 1
aim-100-1_6_yes1-3 1 1 1 1 1 1
aim-100-1_6_yes1-4 1 1 1 1 1 1
aim-100-2_0_yes1-1 6 1 1 1 1 1
aim-100-2_0_yes1-2 6 2 1 1 1 1
aim-100-2_0_yes1-3 7 2 1 2 2 2
aim-100-2_0_yes1-4 6 1 1 1 1 1
aim-100-3_4_yes1-1 23 8 4 5 6 6
aim-100-3_4_yes1-2 20 8 5 6 5 5
aim-100-3_4_yes1-3 23 8 4 5 6 6
aim-100-3_4_yes1-4 26 8 7 7 6 6
aim-100-6_0_yes1-1 47 25 0 5* 0 0
aim-100-6_0_yes1-2 48 13* 0 0 4* 0
aim-100-6_0_yes1-3 47 11* 0 0 0 0
aim-100-6_0_yes1-4 48 6* 0 0 0 0
aim-200-6_0_yes1-1 98 46* 41* 1* 1* 1*
aim-200-6_0_yes1-2 103 18* 23* 23* 15* 11*
aim-200-6_0_yes1-3 105 32* 15* 17* 15* 9*
aim-200-6_0_yes1-4 105 33* 29* 2* 14* 32

LØKKETANGEN AND GLOVER24

of our approach to initiate a multistart method, as in surrogate constraint strategies of
Glover (1977). For these tests we do not exploit PTS notions beyond the starting
solutions. (We note that a similar multistart design has been adopted by GRASP, though
relying chiefly on randomization effects rather than on the use of surrogate constraint
guidance.) As is clearly evident from the table, using the F3 or F4 normalization often
succeeds in significally reducing the cardinality of the best V found. (Similar
improvements were also found for worst and average solutions.)

The issues connected with reducing infeasibility during the constructive phase
acquire relevance primarily under the assumption that higher quality starting solutions,
which we are implicitly defining as solutions with smaller sets V of violated inequalities,
tend to enable a problem to be solved more effectively in a subsequent improvement
phase. As can be seen from the tables, the ensuing local search phase finds the optimum
easier when the cardinality of the best V found is reduced.

Table II similarly gives the results for the as* and tm* test cases (the dash in the
table entry for F6 and tm2-yes, is because a floating point error occurred for this
configuration. This is not too surprising, as tm2-yes has clauses with a lot of literals).

Name F1 F2 F3 F4 F5 F6
as2-yes 8* 5* 3* 2* 1* 0
as3-yes 8* 4* 3* 2* 1* 0
as4-yes 55 33 17 16 17 9
as6-yes 31 15 13 11* 5* 0
as8-yes 10* 6 5 6* 4 4*
as10-yes 44 22 13* 8* 11 1*
as11-yes 22 10* 8* 8* 6* 1*
as12-yes 16 11* 7* 7* 7* 7*
as13-yes 33 14 6* 6 5* 3*
as14-yes 5* 4* 4* 2* 2* 2*
as15yes 89 30 16 13 13 13*
tm2-yes 1318 266* 118* 74* 19* -

Table II. V versus F for as* and tm*. Constructive procedure. No learning.

Name F1 F2 F3 F4 F5 F6
jnh1 33 4 3 2 2 2
jnh2 43 8 3 1* 0 0
jnh12 39 6 3 3 1 0
jnh17 44 7 4 2 1* 1
jnh201 32 4 1* 1* 0 0
jnh204 40 5 2 1 4 1
jnh205 39 4 3 2 1 1
jnh207 34 5 3 1 1 1
jnh209 39 7 4 2 2 2
jnh210 38 6 0 1 2 3*
jnh212 33 6 3 2 2 1
jnh213 36 9 1 4 0 1
jnh217 37 7 3 1* 1 0
jnh218 40 5 2* 1 0 0
jnh220 35 5 3 1* 3 1
jnh301 37 9 4 3 2 2

Table III. V versus F for jnh*. Constructive procedure. No learning.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 25

Table III gives the results for the jnh* test cases. As can be seen from the tables, using
the normalization F1 generally fails to produce good results. Progressively better results
for F2, F3 and F4. The inclusion of F5 and F6 produces similar, and for some test case
classes better, results than using F4.

as2-yes F1 F2 F3 F4 F5 F6

Best found 8 0 0 0 0 0

Opt at - 35 22 33 5 0

Avg. values 31.9 6.4 7.5 5.7 3 0

Table V. Results for as2-yes with learningTable IV. v(i) vs. F for as2-yes.

v(i) F1 F2 F3 F4 F5 F6

1 8 5 3 2 1 0

1.1 8 3 3 0 0 0

1.2 9 2 0 0 0 0

1.5 8 0 0 0 0 0

2 8 0 0 0 0 0

Table VI. V versus F for aim*. Constructive procedure. v(i) = 1.5.

Name F1 F2 F3 F4 F5 F6
aim-50-1_6_yes1-1 1 1 1 1 1 0
aim-50-1_6_yes1-2 1 1 1 0 0 1
aim-50-1_6_yes1-3 1 0 0 0 0 0
aim-50-1_6_yes1-4 1 1 0 0 0 0
aim-50-2_0_yes1-1 2 1 1 1 1 1
aim-50-2_0_yes1-2 3 1 1 1 1 1
aim-50-2_0_yes1-3 2 1 1 1 1 1
aim-50-2_0_yes1-4 3 0 0 0 0 0
aim-50-3_4_yes1-1 9 4 2 2 2 0
aim-50-3_4_yes1-2 11 3 0 0 1 1
aim-50-3_4_yes1-3 12 3 1 0 0 0
aim-50-3_4_yes1-4 11 4 0 0 0 0
aim-50-6_0_yes1-1 21 1* 0 0 0 0
aim-50-6_0_yes1-2 21 0 0 0 0 0
aim-50-6_0_yes1-3 21 4* 0 0 0 0
aim-50-6_0_yes1-4 21 3* 0 0 0 0
aim-100-1_6_yes1-1 1 1 1 1 1 1
aim-100-1_6_yes1-2 1 1 1 1 1 1
aim-100-1_6_yes1-3 1 1 1 1 1 1
aim-100-1_6_yes1-4 1 1 1 0 1 1
aim-100-2_0_yes1-1 5 1 1 1 1 1
aim-100-2_0_yes1-2 6 2 1 2 2 1
aim-100-2_0_yes1-3 7 2 1 1 2 1
aim-100-2_0_yes1-4 6 1 1 1 1 1
aim-100-3_4_yes1-1 23 11 8 6 5 3
aim-100-3_4_yes1-2 23 9 7 6 3 5
aim-100-3_4_yes1-3 24 5 7 4 4 1
aim-100-3_4_yes1-4 23 10 6 6 3 5
aim-100-6_0_yes1-1 52 19* 6* 0 0 0
aim-100-6_0_yes1-2 53 18* 0 0 0 0
aim-100-6_0_yes1-3 52 18* 11* 0 0 3*
aim-100-6_0_yes1-4 49 18* 0 1* 1* 0
aim-200-6_0_yes1-1 103 58 8* 4* 0 0
aim-200-6_0_yes1-2 103 44* 12* 45 38* 47
aim-200-6_0_yes1-3 105 60 36* 21 24* 0
aim-200-6_0_yes1-4 103 55 39 2* 29* 17

LØKKETANGEN AND GLOVER26

9.2 Learning and PTS in the constructive procedure. We investigate whether the
learning strategies cause the constructive part of our method to yield smaller sizes for V,
the set of unsatisfied clauses, and whether these strategies also provide advantages that
carry over to the subsequent improvement phases.

We used as2-yes as a test-case to identify good values for the clause weight
multiplier v(i). Table IV shows the effects of different values of v(i) for the different
weights. As can be seen, the important aspect here is to include some amount of
learning. Another interesting question is how fast the methods converges to an optimum.
In Table V this is illustrated for the same as2-yes test case. The rows show the best
value of V found, the iteration number where this V was found, and the average value of
V for the iterations up to (and including) the point where the best V was found. A value
of v(i) = 1.5 was used.

This example illustrates very nicely that by using the more extreme F’s, the search
yields better average values for each iteration, and converges faster to the optimum. The
inclusion of the learning mechanisms clearly has a beneficial effect.

For the general testing of learning we used the same value of v(i) = 1.5. The test

Table VII. V versus F for as* and tm*. Constructive procedure. v(i) = 1.5.

Name F1 F2 F3 F4 F5 F6
as2-yes 8 0 0 0 0 0
as3-yes 6* 1* 0 0 0 0
as4-yes 96 17 19 2 0 9
as6-yes 33* 8 0 4* 0 0
as8-yes 12* 2 3* 2 2* 2*
as10-yes 35 1* 0 1* 0 0
as11-yes 12* 3* 0 0 0 0
as12-yes 16* 5* 6* 6* 5* 5*
as13-yes 37 5 4* 3* 3* 3*
as14-yes 7* 1* 1* 1* 2* 2*
as15yes 100 21* 18 15 9 13*
tm2-yes 1318 257* 30* 8* 2* -

Name F1 F2 F3 F4 F5 F6
jnh1 27 6 3 2 1 2
jnh2 38 9 4 2 0 0
jnh12 43 6 4* 4 0 1
jnh17 43 9 2 2* 1* 1
jnh201 27* 7 1 0 0 0
jnh204 37 7 3* 2 1 1
jnh205 42 5 3 2 1 1
jnh207 38 7 5 1 1 1
jnh209 41 11 4 2 1* 0
jnh210 35 6 3* 1 0 1*
jnh212 36 5 2 2 2 1
jnh213 40 8 4 1 0 1*
jnh217 30 8 4 1 0 1*
jnh218 36 7 3* 1 0 1
jnh220 35 8 4 2 2 2
jnh301 37 9 4 2 1 2

Table VIII. V versus F for jnh*. Constructive procedure. v(i) = 1.5.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 27

setup follows the same design as the tests without learning. The results are shown in
Tables VI, VII and VIII. (Recall that entries marked with an asterix indicate that the
optimum was found within 100 iterations in an ensuing improvement phase.) (The
“dash” in the entry for tm2-yes and F6 was due to floating point overflow, due a some
clauses with large number of literals.)

It is evident from the tables that the learning mechanism generally has a very
beneficial effect, and the optimum (or a near optimum) is found for most test cases,
when a sufficient large F is used, in spite of the lack of sophistication embodied in the
improving phase of the search. It is also evident that the learning has very little effect
when F1 is used.

We also tested the effect of introducing controlled probabilistic measures to the
move selection process, as outlined in Section 7. As a test case we used jnh1, and ran
tests both with, and without learning. F5 was used for normalization. The rest of the test
setup was as for the other tests in this section.

The results are shown in Tables IX and X. As can be seen, neither of the tests shows
any benefit from using probabilities for selecting moves during the constructive phase,
hence in this phase a deterministic search seems as useful as a probabilistic one. This
can be taken as an indication of the focusing ability of both the surrogate constraint and
learning mechanisms. Preferred moves, which end up on the top of the candidate list as a
result of these mechanisms, are indeed better than the ones further down. If PTS is to be
used in the constructive phase, then a value of p fairly close to 1 should be used, such
that the probabilistic component only exerts a small diversifying effect.

9.3. Tests of improvement methods. As pointed out in Section 5, the surrogate
constraint improvement procedure is quite different from the constructive procedure.
For example, in a 3-SAT problem, which contains 3 literals in every clause (and hence ni

is the same for all i), there is no difference between the uniform weighting provided by
the F1 function and the weightings provided by other functions. (In a constructive
method, by contrast, differences among these weightings emerge because the ni values
change.)

We ran initial tests with random initialization, 5 runs and 10,000 iterations per run,
and with a depth of 3 for the surrogate constraint weights. (See Section 5.2). These tests

p Best Wor Avg.

0.1 7 24 15.0

0.2 4 23 12.1

0.3 3 18 9.8

0.4 2 19 9.3

0.5 2 17 8.3

0.6 3 15 8.3

0.7 3 16 7.6

0.8 2 14 7.4

0.9 2 13 6.85

1.0 2 14 7.2

Table IX. PTS on jnh1. No learning. Table X. PTS on jnh1. v(i) = 1.5.

p Best Wor Avg.

0.1 6 28 15.8

0.2 4 20 11.7

0.3 2 18 10.1

0.4 2 16 7.9

0.5 1 14 7.3

0.6 1 14 6.5

0.7 1 17 6.5

0.8 2 12 5.9

0.9 1 13 5.6

1.0 1 13 5.4

LØKKETANGEN AND GLOVER28

generally failed to find any solutions, apart from the highly structured tm2-yes and some
from the simpler aim-6_0 group. One reason for the failure to produce solutions is the
obvious lack of diversification present when using only surrogate constraint evaluations
to guide the search. Following the tabu search scheme that the best form of
diversification is based on the use of adaptive memory and learning, as illustrated by our
use of learning in the constructive phase, we therefore embedded a simple learning
scheme in all remaining tests of the improvement method. (See next Section).

9.4 Learning and PTS in the in the improvement procedure. To test the effect of
learning in the improvement phase, we used Δw = 1. (See Section 6.2). This ensures that
the learning effect is fairly large compared to the initial clause weights, and should give
a significant contribution early. The results are presented in Tables XI, XII and XIII, for
5 runs of 10,000 iterations each. The tables gives best, worst and average values for the

Name Best Wor Avg. Min
Flips

Max
Flips

aim-50-1_6_yes1-1 0 0 0 275 8036
aim-50-1_6_yes1-2 0 0 0 197 2800
aim-50-1_6_yes1-3 0 0 0 251 9230
aim-50-1_6_yes1-4 0 1 0.8 89 -
aim-50-2_0_yes1-1 0 0 0 207 5513
aim-50-2_0_yes1-2 0 2 0.5 220 -
aim-50-2_0_yes1-3 0 0 0 370 2002
aim-50-2_0_yes1-4 0 0 0 103 1163
aim-50-3_4_yes1-1 0 0 0 89 3952
aim-50-3_4_yes1-2 0 0 0 62 1045
aim-50-3_4_yes1-3 0 0 0 60 883
aim-50-3_4_yes1-4 0 0 0 95 620
aim-50-6_0_yes1-1 0 0 0 42 416
aim-50-6_0_yes1-2 0 0 0 61 189
aim-50-6_0_yes1-3 0 0 0 19 247
aim-50-6_0_yes1-4 0 0 0 28 225
aim-100-1_6_yes1-1 0 1 0.4 2686 -
aim-100-1_6_yes1-2 0 1 0.8 7234 -
aim-100-1_6_yes1-3 0 1 0.4 1666 -
aim-100-1_6_yes1-4 0 0 0 1211 3095
aim-100-2_0_yes1-1 0 1 0.6 3019 -
aim-100-2_0_yes1-2 0 4 1 1020 -
aim-100-2_0_yes1-3 0 3 1 905 -
aim-100-2_0_yes1-4 0 1 0.4 1496 -
aim-100-3_4_yes1-1 0 0 0 590 8676
aim-100-3_4_yes1-2 0 5 1.8 510 -
aim-100-3_4_yes1-3 0 4 0.8 575 -
aim-100-3_4_yes1-4 0 0 0 1501 6225
aim-100-6_0_yes1-1 0 0 0 242 472
aim-100-6_0_yes1-2 0 0 0 75 503
aim-100-6_0_yes1-3 0 0 0 172 425
aim-100-6_0_yes1-4 0 0 0 219 780
aim-200-6_0_yes1-1 0 0 0 555 5398
aim-200-6_0_yes1-2 0 0 0 439 1101
aim-200-6_0_yes1-3 0 0 0 452 2021
aim-200-6_0_yes1-4 0 0 0 304 7429

Table XI. V for aim*. Improvement procedure. Δw = 1.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 29

cardinality of V, and the minimum and maximum number of flips used. (A dash in the
“Max Flips” column indicates that the maximum of 10,000 iterations was used. As can
be seen, the inclusion of learning has a marked effect on the search, with the optimum
found for all the test cases on most runs.

We tested the use of probabilities in this framework, and found similar results as
reported for the constructive procedure.

More extensive testing of the various parameters for the learning mechanisms might
be done, but we believe that our results clearly indicate the beneficial effect of including
learning mechanisms in the search process.

The effect of learning should be discounted over time (by increasing Δw over time
in the improvement learning procedure, or similarly setting Δv > 0 for the constructive
learning procedure), if the search has to be run for a longer time (i.e. by including more
restarts in the constructive procedure and more iterations in the improvement
procedure.)

Name Best Wor Avg. Min
Flips

Max
Flips

as2-yes 0 0 0 57 100
as3-yes 0 0 0 56 267
as4-yes 0 0 0 396 1405
as6-yes 0 0 0 177 343
as8-yes 0 0 0 37 407
as10-yes 0 0 0 160 501
as11-yes 0 0 0 64 352
as12-yes 0 0 0 52 163
as13-yes 0 0 0 130 327
as14-yes 0 0 0 40 117
as15yes 0 0 0 284 484
tm2-yes 0 0 0 107 127

Table XII. V for as* and tm*. Improvement procedure. Δw = 1.

Table XIII. V for jnh*. Improvement procedure. Δw = 1.

Name Best Wor Avg Min
Flips

Max
Flips

jnh1 0 0 0 91 1254
jnh2 0 0 0 275 558
jnh12 0 0 0 514 1908
jnh17 0 0 0 183 814
jnh201 0 0 0 83 156
jnh204 0 0 0 248 564
jnh205 0 0 0 178 1168
jnh207 0 1 0.2 508 -
jnh209 0 0 0 224 1867
jnh210 0 0 0 132 856
jnh212 0 1 0.4 331 -
jnh213 0 0 0 132 607
jnh217 0 0 0 82 1749
jnh218 0 0 0 64 1093
jnh220 0 1 0.2 107 -
jnh301 0 0 0 452 9759

LØKKETANGEN AND GLOVER30

10. Conclusions and future studies.
We have shown how the use of surrogate constraint analysis gives rise to superior

guidance when applied to both constructive and iterative procedures for the satisfiability
problem, on both structured and random instances. As would be expected, the best
guidance is provided for the structured test cases.

Our testing has centered on the goal of applying a surrogate constraint method that
uses only the simplest forms of memory, without incorporating more advanced memory-
based strategies proposed by tabu search. Nevertheless, we have shown that the
associated learning mechanisms can improve the search, in some cases dramatically. In
fact, we find that the benefits of this effect dominate those that result from probabilistic
decision rules.

A strategy that has been highly effective with surrogate constraint approaches in
other settings is strategic oscillation. One interesting area for future studies is to apply
this type of procedure to take advantage of the “proximate optimality principle” (POP),
which says roughly that good solutions at one level are likely to be found “close to”
good solutions at an adjacent level. The relevance of this may be illustrated as follows.
A “wrong move” can easily be made at a fairly early stage of a constructive approach,
because the information available for making decisions is especially incomplete during
early construction stages. Once such a misstep occurs, the evaluations for future moves
will be accordingly influenced in such a way that the error becomes “reinforced,” since
future choices will be designed to favor conditions that support this move. Thus,
additional associated errors will occur, each giving rise to future distortions in
evaluations. These will consequently lead to choices that further lock in the unfortunate
patterns laid down by earlier choices. Ultimately, this reinforced error will be nearly
impossible to “undo” when an exchange approach is applied. (In a local sense, changing
a previously wrong move can seriously disrupt the current pattern, in view of the layers
of other choices subsequently made to support the earlier move.)

This type of scenario discloses the potential utility of the POP notion, which can be
exploited by interrupting the constructive process and introducing exchange moves to
improve each given level before progressing to the next. In this way, defects are
prevented from accumulating. The defects that remain are “closer to the surface,” and
thus more accessible to being removed by the application of an improvement method
when the construction is finally complete.

Another highly effective use of strategic oscillation occurs by means of a critical
event memory design. Applying this form of memory in conjunction with surrogate
constraints has produced the most effective known methods for multidimensional
knapsack problems (Glover and Kochenberger (1996); Glover, Kochenberger and
Alidaee (1996)). An appealing avenue for future study would be to explore ways to get
the fullest advantage from applying strategies based on the POP notion and critical event
memory within the surrogate constraint framework.

11. References
Chvtal, V., A greedy heuristic for the set covering problem, Mathematics of Operations Research

4 (1979), 233−235.
Connolly, D., General Purpose Simulated Annealing. Journal of the Operational Research

Society, 43(5) (1992), 495-505.

SURROGATE CONSTRAINT ANALYSIS FOR SATISFIABILITY PROBLEMS 31

Dowsland, K. A., Simulated Annealing, in: Modern Heuristics for Combinatorial Problems, (Ed.
C. R. Reeves), Blackwell, Oxford, (1993).

Freville, A. and Plateau, G., An exact search for the solution of the surrogate dual of the 0-1
bidimensional knapsack problem. European Journal of Operational Research 68 (1993),
413-421.

Gavish, B. and Pirkul, H., Efficient algorithms for solving multiconstraint zero-one knapsack
problems to optimality, Mathematical Programming 31 (1985), 78−105.

Glover, F., A multiphase-dual algorithm for the zero-one integer programming problem.
Operations Research, 13 (1965), 879−919.

Glover, F., Surrogate constraint duality in mathematical programming. Operations Research 23
(1975), 434−451.

Glover, F., Heuristics for integer programming using surrogate constraints. Decision Sciences 8
(1977), 156−166.

Glover, F., Tabu search - Part I. ORSA Journal on Computing 1(3) (1989), 190−206.
Glover, F. , Kochenberger, G., Critical Event Tabu search for Multidimensional Knapsack

Problems, Meta-Heuristics: Theory and Applications. (Eds. J. Kelly and I. Osman). Kluwer
Scientific Publishers, (1996), 407−428.

Glover, F. , Kochenberger, G. and Alidaee, B. Adaptive Memory Tabu Search for Binary
Quadratic Programs, School of Business, University of Colorado, Boulder, (1996).

Greenberg, H. J. and Pierskalla, W. P., Surrogate Mathematical programs. Operations Research
18 (1970), 924−939.

Greenberg, H. J. and Pierskalla, W. P., Quasi-conjugate functions and surrogate duality. Cahiers
du Centre d´Etudes de Recherche Operationelle 15 (1973), 437−448.

Gu, J., Purdom, P. W., Franco, J. and Wah, B. W., Algorithms for the Satisfiability Problem: A
Survey, working paper, Univ. of Calgary, Canada, (1995).

Hart, J. P. and Shogan A. W., Semi-Greedy Heuristics: An Empirical Study. Operations Research
Letters, 6(3) (1987), 107−114.

Hooker, J.. N., Testing Heuristics: We Have It All Wrong. Forthcoming in Journal of Heuristics,
(1996).

Karwan, M. H. and Rardin, R. L., Some relationships between Lagrangean and surrogate duality
in integer programming. Mathematical Programming 17 (1979), 230−334.

Løkketangen, A. and Glover, F., Probabilistic Move Selection in Tabu Search for 0/1 Mixed
Integer Programming Problems, Meta-Heuristics: Theory and Applications. (Eds. J. Kelly and
I. Osman). Kluwer Scientific Publishers, (1996), 467−488.

Resende, M. and Feo, T. A., GRASP for satisfiability. Research Report, AT&T Bell Laboratories,
Murray Hill, NJ. (1994)

Selman, B., Levesque, H. and Mitchell, D., A new method for solving hard satisfiability
problems, in Proceedings of AAAI-92, San Jose, CA, (1992), 440−446.

Selman, B., Kautz, H., and Cohen, B., Local search strategies for satisfiability testing, to appear
in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol 2 (1995).

Yu, G., On the max-min 0-1 knapsack problem with robust optimization applications. To appear
in Operations Research.

INSTITUTE OF INFORMATICS, MOLDE COLLEGE, MOLDE, NORWAY

E-mail address: Arne.Lokketangen@hiMolde.no

SCHOOL OF BUSINESS, CB 419, UNIVERSITY OF COLORADO, BOULDER, CO, USA
E-mail address: Fred.Glover@colorado.edu

