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Abstract

This paper reports a real-world application of a large-scale assignment/aliocation
mixed-integer program for optimal deployment and targeting of missiles for the
U.S. Strategic Alr Command. We provide a NETFORM model that reduces the
number of zero-one variables of a standard integer programming formulation by
more than two orders of magnitude (by factors approaching 500) and a tailored
NETFORM software wystem that solves problems involving 2 400 zero -one variables
and 984 000 continuous variables to within 99 9% of optimality in less than one
minute on an IBM 4381.

i. Introduction

This article addresses the problem of devising an optimal strategic strike force
plan involving an MIRV w=apons delivery system for the U.S. Strategic Air Command.
While the proposed model/solution approach is specifically for this particular type of
missile system, it is applicable to a w:.de variety of weapon system deployment
problems. In general, manyv weapon systemn deployment studies involve the assignment
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of weapons to potential targets in order to develop a strategic strike force plan with
the goal of maximizing the value of targets reached (see, for example, [8]). The
weapon assignments must satisfy external constraints imposed on the solution,
including the accessibility of each target installation to the weepon assigned to it,
multiple hit requirements, and desired weapon mixes for different elements of the
target system. A typical problem of this kind involves a few thousand target installa-
tions and a few hundred force attack elements, each containing a fixed number of
weapons.

Within this general formulation, the problem can be subdivided into two sub-
classes. The fi¥st subclass contains those problems in which the accessibility of targets
to weapons is highly restricted, reducing feasible options to a oint that allows a
heuristic algorithm to sift through available alternatives and provide a satisfactory
solution. (This work is detailed in {1].) For the second subclass of problems, target
asscessibility is not so severely constrained, giving rise to a decision problem that is
highly combinatorial in nature. In this case, the direct heuristic approach suffers
major shortcomings, and a more global procedure is required. This paper reports
the design of a NETFORM (network-related formulation) and an associated solution
procedure tailored for the resulting model structure. The NETFORM approach
(including both model and solution method} has proved highly effective, reducing
the number of zero-one variables of a standard integer programming formulation
by more than two orders of magnitude, and yielding solutions within a fraction of
a percent of a globzl optimality bound, where this fraction becomes progressively
smaller as the problem size grows. The method is also highly efficient, requiring less
than one minute of CPU time for an IBM 4381 to solve a protlen: involving 984 000
continuous variables and 2 400 zero-one variables.

2. Initial mixed-integer formulation

The process of weapons delivery may be thought of as delivering a collection
of weapon packets, or bundles, to a selected subset of regions called focus centers.
Each focus center is itself a target, and if a weapon bundle is delivered to a particular
center, then one of the weapons in the bundle must be assigned to the focus center
as its target. A specified set of other targets is also accessible from the focus center,
and the remaining weapons in the bundle can be assigned to any subset of these
accessible targets, subject to the provision that at most one wezpon is assigned to
any given target,

The number of targets accessible from a focus center always exceeds the
number of weapons contained in a bundle. At the same time, the targets accessible
to two different focus centers may overlap, and a focus center that is sufficiently
close to another may indeed be among the accessible targets for the second center.
The objective is to choose a collection of focus centers, and for each of these an
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associated subset of accessible targets, for assigning the weapons of the weapon
bundles. More specifically, each target has a rating, depending in part on the focus
center from which the terget is reached, and the goal is to identify a weapons assign-
ment that maximizes the sum of ratings of the targets reached.

To formulate the force assignment problem mathematically, let Xii and Y,
respectively, denote the number of weapon bundles (0 or 1) sent from bundle origin i
to focus center j, and the number of weapons (0 or 1) sent from focus center j to
target k. Let N, NV,.and N, be the index sets, respectively, for the weapon bundle
origins, focus centers, and targets, where the cardinality of ; is denoted by n,. With-
out Joss of generality, we assume n, = ny (this is customarily the case but if it were
not, we could create dum:ny focus centers or dummy targets with high cost connections
that would preclude their use). We also assume the elements of NV, and N, are indexed
so that for each j € N,, the node j in /V; with the same index is its associated focus
center target. Further, let A4; (B,.) be the set of focus centers (target nodes) accessible
from weapon bundle origin i (focus center j), and let Cj (D) be the set of weapon
bundle origins (focus centers) which have access to focus center j (target k). (Because
bundles begin their journey from different locations, not every focus center can be
reached by a given bundle origin 7.) A suitable cost Ciy is defined for each variable Y,
and reflects the rated value of striking target & from focus center j. Finally, T is,
defined an an integer “target number” measured as a quantity of weapons to be
delivered from a weapon bundle origin to a focus center, if weapons are delivered.
For our application, T is a constant.

The mathematical formulation is shown below. Constraint (1) ensures that
each bundle of T weapcns is assigned to exactly one focus center. Constraint (2)
ensures that all weapons assigned to a focus center are assigned to targets. Constraint
(3) ensures that if a weapon bundle is delivered to a particular focus center, then
one of the weapons in the bundle must be assigned to the focus center as its target.
Constraints (4) and (5) model the requirements that at most one weapon bundle is
assigned to each focus center and at most one weapon is assigned to each target,
respectively. It may be otserved that inequality (4) is implied by the conjunction of
(2) and (3). We have included it, however, to show its role in parallel with the role
of (5).

Maximize z z Cir Y
jEN, kEB;

subject to 2. Xy=1, iEN, (1)
JEA;
T 2 Xy= 2. Yy, jEN, )

iEC',' k € Bj
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2. Y, <Y,T, jEN, 3)
kEBI'
2 X, <1, jEN, 4)
iECI'
2. Y <1, kEN, (5)
JE€ D
Ky Yy =0or 1, iI€EN,, JEN,, KEN,. (6)

Disregarding constraints (3) and (4) leads to the mixed-integer generalized
network formulation shown in fig. 1 and referred to as the force assignment problem.
The left-most column of nodes (Level 1) represents weapon bundle origins, the center
nodes (Level 2) represent focus centers, and the right-most nodes (Level 3) represent
targets. Each weapon bundle origin node has a supply of one weapon bundle, shown
in the triangle pointing toward the node. Each origin node / is connected by an arc
to each focus center node j which is an accessible focus center for origin 7. Associated
with each of these arcs is the “target number” T, shown in a triangle, which denotes
the arc multiplier in generalized network terminology [2,4]. This multiplier represents
the fact that 7 weapons reach focus center node j by each arc that carries a weapon
bundle to that node. Each focus center node j is connected by arcs to all target
nodes k that are accessible to focus center j. Arc costs (strike ratings) C/‘k are shown
in rectangles on thesz arcs. Each target node has a demand of at most one weapon,
indicated by the arc with 0, 1 bounds in parentheses leaving each target node.

Each arc that is constrained to carry a discrete (integer) flow of 0 or 1 is
indicated by appending an asterisk to its bounds, i.e. by the syrabol (0, 1)*. Although
eq. (6) indicates that all variables are required to be integer (O or 1), this restriction
is partially redundan® by reference to the NETFORM of fig. 1. More precisely, this
NETFORM reveals hidden unimodularity in the mathematical formulation (1)—(6).
To see this, first note that in any problem that consists of a generalized network
together with discrete flow conditions, where all problem date other than costs (i.e.
bounds, multipliers, supplies, demands) are integers, it is only necessary that arcs with
non-unit multipliers :nust have integer flows to ensure that all arcs will have integer
flows. This follows f-om the fact that by fixing the discrete flows at integer values,
the residual problem will satisfy the unimodular extreme point property, and hence
any procedure that finds an extreme point solution for the continuous portion of the
problem will obtain an all-integer solution. We will now demonstrate that this uni-
modular property coatinues to hold in the more complex situat.on where the side
constraints not included in the diagram are incorporated into the model.
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Weapon Bundle Nodes Focus Center Nodes Target Nodes
{Level 1} {Lovel 2) {Level 3)

Lo (9 (TLon

Level 1 Level 2
ArCs Arcs
Xif Y}
Fig. 1. Mixed-integer gencralized network for the

force assignment {excluding constraints (3) and (4)).

Within the context of the mixed-integer generalized network formulation,
the interpretation of the side {non-network) constraint (3} is that each horizontal
arc linking a focus center node  to its “"companion” target node with the same index
is required to carry flow of one unit if any flow enters the focus certer node. Further-
more, constraint {3} in conjunction with constraint (2) {where the latter is embodied
within the network) ensures that when Y. < 1 and all X, are restricted to zero or
one, at most one arc entering the focus center node will carry a positive flow, and this
flow must deliver exactly T units to the node and force Y;.f: 1. Thus, when the
network in fig. 1 is solved together with these side constraints, and the arcs indicated
in the diagram by asterisks are restricted to carry integer flows. all other arcs will
carry integer flows automatically. The chief consequence of the insights provided by
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the NETFORM is the ability to dramatically reduce the number of zero-one variables.
Given the integer restrictions on the X,-; variables, all other variables can be treated
as continuous variables.

3. An improved NETFORM model

Further analysis with the aid of a network-related representation yields a new
NETFORM, which in turn provides an improved mathematical formulation. By means
of this model, it is possible to achieve a further significant reduction in the number of
discrete (0 or 1) variables, while at the same time incorporating all constraints of the
previous model into the NETFORM. Both of these types of charges are important
for developing an effective solution procedure.

As a basis for the alternative representation, we again make use of the fact
that if an arc in fig. I carries a positive flow into focus center node /, then by the
restrictions (2) and (3), only one arc can do 50, and exactly T units of flow must
enter node ;. Moreover, one of these 7 units of flow must go on the (/, /) arc from

Focus Center Nodes Intermediate Nodes Target Nodes

©,1)
"\@
. .__© ©,1) o

@ (0,13

Fig. 2. Network componeni incorporating companion target require-
ments and one bundle per focus center into force assignmert network.

the focus center node to its associated target, which means that at most 7 — 1 units
of flow can go on all other arcs out of focus center node j. The implications of these
observations can be clarified and expressed in a straightforward fashion by the diagram
in fig. 2. in which the arcs out of focus center node j that lead to targets other than
target j are reached by first traversing an intermediate arc to a new node j.
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The indicated modification successfully absorbs conditions that were initially
external to the original NETFORM inio the network structure. Pictorially, however,
we can observe an additional interesting feature that makes it possible to do better.
Since only one of the arcs into focus center node j will be able to deliver its load of
T units, note that we may intercept the flows into node j by inserting an arc prior
to this node that will raceive the flows from all arcs that previously entered node /.
To embody the desired restrictions, this intermediate arc must be bounded to limit
the incoming flow to be at most one unit and must be given a multiplier to translate
a unit flow into a load of T units. Letting the initial node of this interposed arc be
denoted by /., we obtain the diagram in fig. 3.

Focus Center Nodes Target Nodes

€> .1,

Fig. 3. Network component reducing the number of discrete vari-
ables in the force assignment network to one per weapon bundle,

The arcs into node f are the same as those previously into node /, except
that their multipliers, bounds, and irtegrality restrictions are removed. The new
arc from / to j provides the multiplier effect and is restricted to be integer-valued,
hence in this case O or 1. The power of the changes leading to fig. 3 is that the integer
requirement for this single new type of arc from / to j can replace the full collection
of integer requirements for the arcs in fig. 1. The accumulation of model refinements
provided by these visual enalyses is shown in fig. 4.

The NETFORM of fig. 4 leads naturally to a new mathematical formulation
in which (1} and (5) are retained, and the constraints {2}, (3), (4), and (6) are replaced
by (73, (8}, (9), (10), (11), and {(12), as follows. In this representation, the set C;
equals the previous Cf and the set B}T equals the previous B}.,
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Weapon Bundle Nodes
(Level 1)

Focus Center Nodes Target Nodes
(Level 2) (Level 3)

© ;‘,‘XW

Fig. 4. Mixed-intcger generalized force assignment network incorpo-
rating all side constraints and reducing number of discrete variables.
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J the companion of j € NV,
jEN,
j the companion of j € N,
JEN,

JEN,

J the companion of j € N, .

(7)

(8)

)

(10)
(1)

(12)



F. Glover et al., Optimal deployment of a weapons arsenal 167

The transformation of the variables provided by this new fornulation, which
is responsible for the additional pains in reducing the number of integer variables, is
not evident from a mathematical standpoint and underscores the importance of the
pictorial aid provided by the NETFORM as a means of discovering such relationships.

As noted, the disgram of fig. 4 succeeds in embodying all constraints except
for the zero-one integer requirements in a generalized network structure. It is possible
to go one step further at the expense of abandoning this property. The trade-off in
taking this additional step is to reduce slightly the number of continuous variables
and to achieve a slightly stronger problem relaxation when the integer restrictions
are disreparded,

The basis for this step is to observe that when an integer-constrained arc
from node f to node 7 carries a flow of 1, all arcs meeting node j simultancously
carry fully determined fows. Thus, we may replace node j by an AND node, repre-
sented by a square rather than a circle, which by convention has the property that
all arcs meeting this noce carry the same flow (see, e.g. [3]). The appropriate con-
struction is illustrated in fig. 5.

Focus Center Nodes Targer Hodes

™ (2,1}

= w

A

{0,1)*

\ /;\ 0,1y

J AN o
T \

-,
E{/j ©,1)

Fig. 5. NETFORM component replacing standard (OR}
node of fig. 3 with AND node construction.

In this diagram, the standard node j of fig. 3 (which constitutes an OR node
because arcs meeting the node carry flows independently, i.e. disjunctively) is replaced
by the corresponding AND node. An AND node and all arcs meeting this node repre-
sent a single variable. The constraints directly affected by this AND variable are
represented by the standard (circular) nodes which are the peripheral sndpoints of its
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associated arcs. (By the usual convention, each standard node corresponds to a con-
straint in equality form, stipulating that the flow into the node equals the flow out,
allowing for constant terms expressed as supplies and demands.) Accordingly, the
three separate arcs (variables) meeting the standard node j in fig. 3 become fused
into a single variable :n fig. 5. Information relevant to this variable (such as bounds
and cost) is now positioned in proximity to the square, which is the embodiment of
this variable in the diagram.

The diagram of fig. 5 has the interpretation that each unit of the variable
associated with the square simultaneously extracts one unit from node f sends 7 — 1
units to node j, and sends one unit to target node j. This interpretation applies to
fractional units as well as to integer units, which yields a stronger problem relaxation
than the NETFORM based on fig. 3 when the integer restrictions are dropped. In
other respects, the NETFORM based on fig. S has the same “structure” as that of
fig. 3 and hence we do not bother to display the resulting full problem NETFORM, as
the analog to fig. 4,in a separate diagram.

The mathematical formulation corresponding to the NETFORM based on
fig. 5 collapses the variables X]‘.‘., Y. and ij into a single variable Zii-‘ and replaces
the constraints (7) —(12) by the constraints:

Zi= 2. Xy, j €N, (13)
iECj
(T-12Z;= 2 Yy, jEN, (14)
kEBj
Z;=0or I, JEN, . (15)

Thus, the NETFORM based on using the AND node construction of fig. 5 succeeds
in eliminating 3n, constraints and 2n, continuous variables from the formulation
based on fig.3 (or more generally, fig.4). Tt should be noted, however, that the
consequences of this change are not as widespread as those leading to fig.4. The
number of integer variables is not altered and the number of discarded continuous
variables represents a relatively small fraction of the total number of variables. Further,
two-thirds of the eliminated constraints are upper bound constraints for problem
variables, which do nct affect problem sizes for methods that treat such bounds
implicitly. Finally, as a comparison of figs. 3 and 5 shows, the connectivity structure
of the underlying NETFORMs remains. unchanged.

The comparative merits of the NETFORMs based on fig.3 and on fig. 5
depend on the relative strengths of their continuous relaxations and on their relative
exploitability . (Relaxing the integer restrictions on fig. 3 yields a generalized network,
while relaxing the integer restrictions on fig. 5 yields a linear programming problem
because of the AND node construct.)
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Our resolution of this issue in the present context is based on an important
attribute of NETFORM representations that remains to be discussed — the capacity
to disclose relationships that can be used to advantage in developing an effective
solution procedure. After carefully considering the two contending representations
from this point of view, we find the two NETFORMs based on the constructions of
fig. 3 and fig. 5 equally well suited to our purposes. (In other settings, where a solution
strategy of a different form may emerge as advisable, one or another of an AND node
and an OR node construction may be preferable to the alternative.) In the present
setting, both representations have the same connectivity and succeed in conveving
the same fundamental perspective of the overall problem. Moreover, as will be seen,
we may use this perspective as a basis for an approach that maintains all flows at
integer values at each step. Under the assumption of integer-valued flows, the repre-
sentations based on figs. 3 and 5 are equivalent. Thus, we now turn to characterizing
the solution procedure devised for this problem, and will refer without loss of generality
to fig. 4 as the foundation for its development.

4. Solution procedure

Organizing the solution procedure around the NETFORM of fig. 4 leads to
several key observations. To begin, note that the integer flow arcs create a disconnect.-
ing set for the problem. Removing these arcs decomposes the problem into two
disjoint networks. More specifically, if it were possible to know the right integer
flows on the arcs of the form (/, /), then the rest of the problem could be solved
optimally by solving two pure network problems. Accordingly, the driving philosophy
of the solution strategy is to seek a way of identifying which of the {;, /) arcs should
receive unit flows, making use of the decomposition created by such flows as 2 means
of carrying out the analysis.

To differentiate the two networks that result from the indicated decomposition,
we call the left network the Weapon Bundle Network and the right network the
Target Network {where these names refer to the node sets that are unique to sach
network). For any integer flows on the (; i} arcs, these two networks become
bipartite transportation networks, susceptible to highly efficient solution. We show
how these transportation networks are created in the following discussion, which
subdivides the overall solution approach into three phases.

PHASE [

The first phase of the solution strategy creates a parameterized relaxation of
the target network, which does not assume specific integer flows on the (, /) arcs.
This relaxation has two goals: (1) to provide an evaluation to be used in determining
which (/, ) arcs should zarry positive flows, and (2) to derive a bound for the
optimum objective function value for the overall problem. Both goals ultimately



170 F. Glover et al., Optimal deployment of @ weapons arsenal

depend on coordinating the solution of the target network with that of the weapon
bundle network. In the first phase, however, the target network is solved without
reference to information derived from the weapon bundle network.

D>

Fig. 6. Transportation structure of parameterized
relaxation of the target network (costs not shown).

The transportation structure of the target network relaxation is shown in
fig. 6. The network arises from the NETFORM of fig. 4 by the following steps. First,
collapse the (J, 7 ) arcs of fig. 4, merging their two endpoints into the single node .
We follow the convention of identifying nodes j, j, and j by reference to their
“commeon index” j. Give each node j, for j=1,...,n,, a supply of T units, and

create two dummy nodes d and d, where d = n, + 1, creating associated zero cost
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arcs (d,jy and (,d). for j=1,... i+ 1. Bach node j,j=1,... n,, is given
a demand of | (dropping the single endpoint arc with a unit upper bound that emanates
from this node), node d is given a supply of n, and node d is given a demand of Tn, .
Figure 6 depicts the structure of this network, disregarding costs,

For arcs other than the O cost arcs meeting nodes d and d , there is a para-
meterization option. At the simplest level, if we employ the original costs {profits)
-Gy for the ares (j.k),as jand k range from 1 to n,, then it is clear that the network
of fig. 6 is indeed a valid relaxation, where the counterpart of this relaxation in the
original problem is the “optimal transportation network” that results by the rules:
(a) delete all nodes j from fig. 6 such that arc (7, ) of fig. 4 carries a O flow in an
optimal solution: (b) eliminate nodes ¢ and d and their incident arcs in fig. 6; and
(c) compel a flow of 1 on each arc of the form (j, f} remaining. In particular, we
may note that every feasitle solution of the optimal transportation network translates
into a feasible solution for the network of fig. 6 with identical cost.

The parameterization of fig. 6 is made possible because of the special status
of arc (7,), which must carry a unit flow if arc {f,j) carries a unit flow in the
original problem. Thus. the costs of all arcs out of node ; can be adjusted by replacing
Cy with C;k,where

Che = Cp +0,/(T = 1) k#j k#d
¢ =Gy -0, i #d .

6/. is an arbitrary parameter of any sign. This parameterization does not change the
costs relative to the requirements of the original problem, since assigning a flow of 1
to arc (7, /) and a flow of | to each of 7 — 1 other arcs (7, k), X # d. achieves the
same total cost regardless of the value of the parameter. The issue is to determine a
value of 8, that gives the strongest relaxation.

One approach is to use some variant of subgradient search, but the time
required to execute the iterative adjustments of such a procedure would be undesirable
relative to the overriding goal of solving the overall problem very rapidly. As a non-
iterative option, a seemingly natural candidate value for 8; is Cj;, since this gives all
arcs (J,7) an “equal status” with a parameterized cos@_C}- = (3. However, reflection
shows this will tend to produce a solution in which all (/, /) arcs have O flows. Instead
we choose 8 to be the value that causes C}j exactly to match the most profitable
C;k for k # j. Experience shows this parameterization choice to be highly effective.

A still more important step in strengthening the use of the transportation
network of fig. 6 occurs »y conducting a post-optimality analysis of its optimal
solution. This occurs at the conclusion of phase 1. The goal of this step is to identify
the cost of assigning a unit flow to arc {/,/) in the original problem, using a measure
based on determining the amount by which this flow assignment would cause the
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solution to the relaxed problem to deteriorate. For this, let ; equal the reduced cost
of are (7, /) plus the sum of the T — 1 smallest reduced costs of those arcs (J, k) such
that & 5 j and k # d. (Such reduced costs are defined in the standard fashion [6,7]
relative to the optimal network solution of the parameterized target network relaxa-
tion. Thus, these costs are all nonnegative and represent the marginal unit decrease
in profit of sending flow on the associated arcs.) It follows that #; is a valid lower
bound on the deterioration in the optimal objective value for the target network
relaxation caused by choosing (7,7) to receive a unit flow. Moreover, if J such arcs
are selected, then the total deterioration of the relaxation is at least the sum of the
J smallest 7, values. It may be noted from fig. 4 that J < min(n,, n,/T). The
“correct” value of J, and an additional strengthening of this bound, will be described
later.

_ Finally, we may also identify a cost 6 that results from no? giving a unit flow
to (7, 7). A legitimate value for &, equals T times the reduced costs of the arc (7, 4),
noting that the reduced cost will be O for each arc (7, d) that carries nonzero flow.
The sum of the n, —J smallest of the §; values also gives a bound on the total
deterioration, though this bound turned out in practice to be dominated by the one
based on the 7; values. The determination of the 7; and the &; values completes the
execution of phase 1.

PHASE 2

The second phase of the procedure coordinates the target network relaxation
with the weapon bundle network. This is done in a3 manner that utilizes both the
w and 8 vaiues from phase 1, with the goal of bringing the two networks to a

consensus on the right arcs to carry unit integer flows. At most n, arcs can be
selected to receive such flows, and the weapon bundle network problem is solved in
order to identify the best subsets of arcs that satisfy this restriction. {For our problem
data, n, < n,/T,and n, turns out to be a reasonably tight upper bound for J/.)

The form of the weapon bundle network employed appears in fig. 7. Two
dummy nodes ¢ and f, where e = ny +1and f=n, *+1, have been added to create
the bipartite transportation structure Each arc (i, } ) for {# eand j % fhas a cost
of m;, while each arc (e, j ) for j # fhas a cost of §;. The cost of each arc (7, 1) for
i# e is 0, while the cost of the arc (e, f) is —M for M large. Thus, an optimal
solution to this network will assign as many of the », origins to the destinations as
possible, and of these, the assignment will occur in such a way as to minimize the
costs m(5; ) of causing the relaxed solution for the target network to deteriorate as a
result of selectmg {not selecting) an arc (, i} to receive flow.

Note that by subtracting &; from the cost of each arc into node i, ; # f, we
obtain an equivalent problem where the new cost of every arc (7, j ) is m; = b; except
for the arc (e, /), whose cost becomes 0. Because of the structure of this probiem
a very effective advanced start is therefore obtained by ranking the} nodes in ascend-
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Fig. 7. Weapon bundle network to coordinate with
target notwork relaxtion,

ing order of the m; — &; velues. The approach then assigns a unit flow to each j node
in this ranked succession, choosing this flow to come from the node i, if one exists,
that still retains its supply and connects to the smallest number of destinations not
yet examined (subject to j being among them). The process stops when n, destina-
tions receive flow, or all nodes j # f have been examined, whereon remaining flows
to achieve a feasible solurion are assigned in the obvious way. This starting solution
is frequently optimal for the weapon bundle network, and when it is not, the number
of iterations to achieve optimality is extremely small. Thus, by the use of this start,
the weapon bundle network requires very little computational effort. Phase 2 con-
cludes by obtaining an opt.mal solution to this network.

PHASE 3

The final phase of the solution process uses the solution to the weapon bundle
network from phase 2 as a basis for redefining the target network. In particular, each
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node j that receives a unit flow in the optimal weapon bundle network is assumed
to identify correctly the associated node ; of the target network which must be
given a supply of 7 units. Thus, the target network is reduced to the form of an
"optimal transportation network”, as defined in phase I, except that the dummy
nodes ¢ and d are retained to allow for the possibility of infeasible solutions, The
provision for handlirg infeasibility when it occurs is simply to eliminate the supply
of T units for the node j with the greatest associated 7 value, and then to post-
optimize. In theory, the post-optimization step would be carried out as many times
as necessary. In practice, however, the step was not required more than once, and
typically was not required at all. (The relationship 7J < Tn, < n, undoubtedly
contributed to this outcome.)

The transportation problem of this final phase, of size J + 1 by n, +1 for
J < ny, is notably smaller than that of phase 1, enabling it to be solved more rapidly.
The speed of solving both the original and final target network problems was further
accelerated by an advanced start procedure. This procedure constitutes a direct
generalization of the starting procedures for the weapon bundle network, imple-
mented by sorting the profits of arcs into each destination node in descending order
and then sorting the destination nodes as in the starting procedures of phase 2. In
this case, however, the node sort is based on the value of the most profitable arc
into the node. from an origin whose supply is not yet extinguished. {Origin node
availabilities and hence the identities of “"most profitable” existing arcs, are updated
at each iteration.) The sorting and updating work was accomplished in negligible
time due to the small integer range of applicable costs, permitting the use of an address
caleulation sort. (Note that the §, parameterization for the target network can
effectively multiply this range by T, but the adjusted range still did not exceed 100.)
As a result, the larger and the smaller target network problems were both solved very
efficiently.

After obtaining the solution to the target network of phase 3, we undertook
to generate a tighter optimality bound by means of a further refined relaxation. We
did this solely as a means of testing how close our solution came to achieving the
tighter bound, and did not incorporate the refined relaxation or its solution into the
strategy for solving the problem. (An additional pass using this relaxation might be
appropriate for more difficult problems where total solution time has a lower
priority.}

The refined relaxation arises as follows. Note that for any choice of J a flow of
JT < n, units must be sent from nodes /,/ # d of fig. 6, to nodes other than .
This implies n, — JT units must be sent from node d to these nodes, or equivalently,
JT units can be sent on the arc (d, d). Thus, if this latter arc is given an explicit
lower and upper bound of JT (effectively reducing the supply and demand values
at its endpoints) and the 7; penalties are calculated as before, a tighter bound is
obtained.
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The value of J that results by solving the weapon bundle network is an upper
bound on the optimal J, and therefore givesa natural “first J” to check. The approach
was repeated for the next smaller value of J, but the resulting bound was invariably
at least as tight as the first. Since the least restrictive bound obtained by stepwise
checking is the one that is theoretically acceptable, we accepted the “first J” bound
as the basis for estimating the proximity of our solution to true optimality. It is
interesting to note that the calculation of these two optimality bounds generally took
at least as much time as required to obtain the solution that these bounds were used
to evaluate,

5. Computational results

Computational testing was applied to a set of benchmark problems whose
statistics are shown in tatle 1. The costs {values of the targets) ranged from 1 to 10,
and the arc multiplier T (number of missiles in a “bundle”) was exactly 10 in all
problems, independent of problem dimension and arc density.

Five different prcblems were solved for each of the seven sets of problem
dimensions shown in table 1, thus constituting thirty-five problems in total. Specific
problem data were supplied by the Strategic Air Command, and all runs were per-
formed on an 1BM 4381. The column indicating total number of variables is based
on the most economical of the formulations, i.e. the one based on the construction
of fig. 5. Thus, this number equals the sum of the Level 1 and Level 2 ares, plus the
number of Level 2 nodes (which gives the number of Z; variables). The Z;; variables
remove as many Level 2 arcs as there are Level 3 nodes, but this number is recovered
in the bounded slack arcs associated with Level 3 nodes. The table reports average
values for the objective functions and the percent of optimality bounds, but gives
maximum computer CPU times (hence each problem of a given dimension was solved
within at most the length of time specified).

The contribution of the NETFORM model in reducing the combinatorial
complexity of the model is evident from the fact that the number of zerc-one variables
of the original integer formulation equals the number of Level 1 arcs plus the number
of Level 2 arcs, which ranges from 106,900 zerc-one variables to 984,000 zerc-one
variables, in contrast to the range from 1,200 to 2,400 zero-one variables for the
NETFORM. Even with this combinatorial reduction, the problems are still extremely
large, containing roughly a quarter of a million to nearly one million variables in
total. Consequently, they pose a significant test for the efficacy of the insights derived
from the NETFORM and embodied in our customized solution procedure.

As the table shows, the deviations from the optimality bounds obtained by
this procedure were only a fraction of a percent, with smaller deviations for larger
problems. The outcomes suggest that the application of NETFORM models and
solution methods specially designed to exploit their structure can be a powerful
tool for solving weapon deployment and targeting problems.



Table 1*
Average Average %  Maximum
Number of Number of Total number Number of Number of  Total number OBJ upper bound CPU time
Level 1 nodes Level 2 nodes® of nodes Level 1 arcst  Level 2 arcs of variables value on OPT value (seconds)
100 1,200 4900 102,000 144,000 247,200 8,970 99.6% 11.63
100 1,200 4,900 96,000 144000 241,200 8,973 99.7% 11.40
100 1,200 4,900 102,000 288,000 391,200 8,994 99.9% 12.9
100 1,200 4,900 96,000 288,000 385,200 8,995 99.9% 13.08
100 1,500 6,100 127,500 225,000 354,000 8,994 99.9% 13.2
100 1,500 6,100 127,500 450,000 579,000 8.998 99.9% 15.8
200 2,400 9,800 408,000 576,000 986,400 17,990 99.9% 53.86

*Results for each problem size are the averages of five separate problems on an IBM 4381.
QEquals the number of Level 3 nodes and also the number of zero-one variables in the NETFORM.
The sum of the number of Level 1 arcs plus the Level 2 arcs equals the number of zero-one variables in the original integer formulation.
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