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This paper reports a real-world 
program for and targeting of missiles for the 

U.S. Strategic Air Command. We NETFORM model that reduces the 
number of zero-one variables of a formulation by 
more than two orders of a.nd a tailored 
NETFORM software :ystem that solves involving 2,400 zero -one variables 
and 984,000 continu;lUs variables to within 99 of in less than one 
minute on an IBM 4381. 
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associated subset of accessible targets, for assigning the weapons of the weapon 
bundles. More specifically, each target has a rating, depending in part on the focus 
center from which the taget is reached, and the goal is to identify a weapons assign­
ment that maximizes the sum of ratings of the targets reached . 

To formulate the force assignment problem mathematically, let Xij and Yjk , 

respectively, denote the number of weapon bundles (0 or 1) sent from bundle origin i 
to focus center j, and the number of weapons (0 or 1) sent from focus center j to 
target k. Let Nt. Nz . and N3 be the index sets, respectively, for the weapon bundle 
origins, focus centers, and targets, where the cardinality of Ni is denoted by n i . With­
out loss of generality, we assume nz = n3 (this is customarily the case but if it were 
not , we could create dum:ny focus cente :~s or dummy targets with high cost connections 
that would preclude their use) . We also assume the elements of N z and N3 are indexed 
so that for each j E N z , the node j in N3 with the same index is its associated focus 
center target. Further, let Ai (Bj ) be the set of focus centers (target nodes) accessible 
from weapon bundle origin i (focus center j), and let Cj (Dk ) be the set of weapon 
bundle origins (focus cemers) which have access to focus center j (target k). (Because 
bundles begin their journey from different locations, not every focus center can be 
reached by a given bundle origin i.) A suitable cost Cjk is defined for each variable Yjk 
and reflects the rated value of striking target k from focus center f. Finally, T is . 
defined an an integer "target number" measured as a quantity of weapons to be 
delivered from a weapon bundle origin to a focus center , if wear on:; are delivered. 
For our application, Tis a constant. 

The mathematical formulation is shown below . Constraint (1) ensures that 
each bundle of T weapcns is assigned to exactly one focus center. Constraint (2) 
ensures that all weapons assigned to a focus center are assigned to targets. Constraint 
(3) ensures that if a weapon bundle is delivered to a particular f~cus center , then 
one of the weapons in the bundle must be assigned to the focus center as its target. 
Constraints (4) and (5) model the requirements that at most one weapon bundle is 
assigned to each focus clmter and at most one weapon is assigned to each target, 
respectively . It may be observed that inequality (4) is implied by the conjunction of 
(2) and (3) . We have included it, however, to show its role in parallel with the role 

of(5) . 

Maximize I I Cjk Yjk 
j E N2 k E Bj 

subject to I Xij = 1 , 
jE Ai 

(1) 

(2) 
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I }jk ~ }jj T, j E N2 (3) 
k EBj 

I Xij ~ 1 , j E N2 (4) 
iECj 

I Y k ~ 1 
J ' 

k E N3 (5) 
jEDk 

Xij' }jk = 0 or 1 , i E N I , j E N 2, k E N3 . (6) 

Disregarding constraints (3) and (4) leads to the mixed -integer generalized 
network formulation shown in fig . 1 and referred to as the force assignment problem. 

The left-most column of nodes (Levell) represents weapon bundle origins , the center 
nodes (Level 2) represent focus centers, and the right-most nodes (Level 3) represent 
targets. Each weapon bundle origin node has a supply of one weapon bundle, shown 
in the triangle pointing toward the node. Each origin node i is connected by an arc 
to each focus center node j which is an accessible focus center for origin i. Associated 
with each of these ar;;s is the "target number" T, shown in a triangle, which denotes 
the arc multiplier in generalized network terminology [2,4]. This multiplier represents 
the fact that T weapons reach focus center node j by each arc that carries a weapon 
bundle to that node. Each focus center node j is connected by arcs to all target 
nodes k that are accessible to focus center j. Arc costs (strike ratings) Cjk are shown 
in rectangles on thes,~ arcs. Each target node has a demand of at most one weapon, 
indicated by the arc with 0,1 bounds in parentheses leaving each target node. 

Each arc that is constrained to carry a discrete (integer) flow of 0 or 1 is 
indicated by appending an asterisk to its bounds, i.e. by the symbol (0 , 1)*. Although 
eq. (6) indicates that all variables are required to be integer (0 or 1), this restriction 
is partially redundan~ by reference to the NETFORM of fig . 1. More precisely, this 

NETFORM reveals hidden unimodularity in the mathematical formulation (1)-(6). 
To see this. first note that in any problem that consists of a generalized network 
together with discretl~ flow conditions, where all problem date. other than costs (i.e. 
bounds, multipliers. supplies, demands) are integers, it is only necessary that arcs with 
non-unit multipliers :nust have integer flows to ensure that all arcs will have integer 
flows. This follows Lorn the fact that by fixing the discrete flows at integer values, 
the residual problem will satisfy the unimodular extreme point property, and hence 
any procedure that finds an extreme point solution for the continJous portion of the 
problem will obtain an all-integer solution. We will now demonstrate that this uni­

modular property c01tinues to holel in the more complex sit:.laLon where the side 
constraints not included in the diagram are incorporated into the model. 
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Fig. 4 . Mixed ·integer generalized force assignment network incorpo-
rating all side constraint s and red ucing numb er of discrete variables. 
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associated arcs. (By the usual convention, each standard node corresponds to a con­
straint in equality form, stipulating that the flow into the node equals the flow out, 
allowing for constant terms expressed as supplies and demands.) Accordingly, the 
three separate arcs (variables) meeting the standard node j in fig. 3 become fused 
into a single variable :.n fig . 5. Information relevant to this varia ble (such as bounds 
and cost) is now positioned in proximity to the square, which is the embodiment of 
this variable in the diagram. 

The diagram of fig. 5 has the interpretation that each unit of the variable 
associated with the square simultaneously extracts one unit from node j, sends T - 1 
units to node T, and :;ends one unit to target node j. This interpretation applies to 
fractional units as well as to integer units, which yields a stronger problem relaxation 
than the NETFORM based on fig. 3 when the integer restriction:; are dropped. In 
other respects, the NETFORM based on fig. 5 has the same "structure If as that of 
fig . 3 and hence we do not bother to display the resulting full problem NETFORM, as 
the analog to fig. 4, in H separa te diagram. 

The mathematical formulation corresponding to the NETFORM based on 
fig. 5 collapses the var::a bles X :- .. y.~. and Y .. into a single variable Z,., .. and replaces "" . " . the constraints (7)-(12) by the constraints: 

Zjj = I Xi; , j E N2 (13) 
iE c; 

(T-l)Z .. = 

" 
L Ifk' j E N2 (14) 

k '= B; 

Z;; = 0 or 1 . j E N2 . (15) 

Thus, the NETFORM based on using the AND node construction of fig. 5 succeeds 
in eliminating 3n 2 constraints and 2n2 continuous variables from the formulation 
based on fig. 3 (or more generally, fig. 4). It should be noted , however, that the 
consequences of this change are not as widespread as those leading to fig. 4. The 
number of integer variables is not altered and the number of disc ~1fded continuous 
variables represents a reatively small fraction of the total number of variables. Further, 
two-thirds of the eliminated constraints are upper bound constraints for problem 
variables. which do nc,t affect problem sizes for methods that treat such bounds 
implicitly. Finally, as a comparison of figs. 3 and 5 shows, the connectivity structure 
of the underlying NETFORMs remains. unchanged. 

The comparative merits of the NETFORMs based on fig. 3 and on fig. 5 
depend on the relative strengths of their continuous relaxations and on their relative 
exploitability. (Relaxing the integer restrictions on fig. 3 yields a generalized network, 
while relaxing the integer restrictions on fig. 5 yields a linear programming problem 
because of the AND node construct.) 
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Table 1 * 

Avt:ragt: Average % Maximum 
Number of Number of Total number Number of Number of Total number OBI upper bound CPU time 

Levell nodes Level 2 nodes '" of nodes Levell arcs t Level 2 arcs of variables value on OPT value (seconds) 

100 1,200 4 ,900 102,000 144,000 247,200 8,970 99.6% 11.63 

100 1,200 4,900 96 ,000 144,000 241,200 8 ,973 99.7% 11.40 

100 1,200 4,900 102,000 288,000 391,200 8,994 99.9% 12.9 

100 1,200 4,900 96,000 288,000 385,200 8,995 99.9% 13.08 

100 1,500 6,100 127,500 225,000 354,000 8,994 99.9% 13.2 

100 1,500 6,100 127,500 450,000 579,000 8 ,998 99.9% 15.8 

200 2,400 9,800 408 ,000 576,000 986,400 17,990 99 .9% 53.86 

* Results for each problem size are the averages of five separate problems on an IBM 4381. 
'" Equals the number of Level 3 nodes and also the number of zero-one variables in the NETFORM . 
t The sum of the number of Levell arcs plus the Level 2 arcs equals the number of zero-one variables in the original integer formulation. 
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