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Abstract

This paper studies risk premia in the term structure. We start with regressions
of annual holding period returns on forward rates. We find that a single factor,
which is a tent-shaped function of forward rates, can predict one-year bond excess
returns with an R2 up to 45%.
Though the return forecasting factor has a clear business cycle correlation, it

does not forecast output, and macro variables do not forecast bond returns. The
return forecasting factor does forecast stock returns, about as much as it would a 7
year duration bond. Its forecast power is retained in the presence of the dividend
price ratio and the yield spread.
We relate these time-varying expected returns to covariances with various shocks,

which is the same as finding the market prices of risk that justify a yield VAR as
an affine term structure model. The time-varying expected return can be entirely
accounted for by a time-varying risk premium for level-shocks in yields, and almost
entirely accounted for by a time-varying risk premium for monetary policy shocks.
How could such an important factor have been missed? The return forecasting

factor does very little for understanding yields. Conventional two or three factor
models provide an excellent approximation for yields, but a poor approximation for
expected returns. Also, bond yields do not follow a monthly AR(1), with a pattern
that suggests measurement error. Hence, if you follow the usual approach in term
structure analysis, starting with a monthly k-factor model chosen to minimize
pricing errors, and then finding implied annual return forecasts, you completely
miss the forecastability of annual returns.
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1 Introduction

This paper studies risk premia in the term structure of interest rates. We start by ex-
tending Fama and Bliss’ (1987) classic regressions. Fama and Bliss found that the spread
between forward rates and one-year rates can predict excess bond returns. Campbell and
Shiller (1991) also find that the slope of the term structure forecasts bond returns. We
find that one particular linear combination of forward rates predicts excess bond returns
even better. It raises the R2 in excess return forecasting regressions from about 17% to
about 45%. Furthermore, the same linear combination of forward rates predicts bond
returns at all maturities, where Fama and Bliss relate each bond’s return to a separate
forward-spot spread. This finding paves the way for a simple representation of the term
structure of interest rates, in which we can use a small number of linear combinations of
yields as state variables, rather than requiring each yield or forward rate as a separate
state variable, in order to forecast that maturity’s return. Our return-forecasting factor is
a tent-shaped linear combination of forward rates. In a horse race, our return-forecasting
factor completely drives out the separate forward-spot spreads used by Fama and Bliss.

Expected returns should be related to covariances multiplied by risk premia. We
find that covariance with a “level” shock to yields, multiplied by a time-varying risk
premium proportional to the return-forecasting factor, describes the time-variation in
expected bond returns. We also study shocks to expected bond returns, inflation shocks
and monetary policy shocks, in an attempt to find a fundamental shock to explain the
time-variation in returns. We find that shocks to expected returns and inflation do not
help, but a time-varying premium for exposure to monetary policy shocks can explain
the bulk of the time-varying expected bond return.

These results correspond with intuition. The unconditional mean excess return rises
with maturity: long bonds return a bit more, on average, than short bonds. The much
larger time-varying component of expected returns also varies systematically with ma-
turity. Long bonds’ expected excess returns load more heavily on our return-forecasting
factor than do short bonds’ expected excess returns. If we wish to explain these facts
with a factor risk premium (the same for all bonds) multiplied by a covariance of each
bond with a shock, then we must find a shock that affects all bond returns in the same
direction, and affects long bond returns more than short bond returns. That is exactly
the feature of a level shock; if the yield curve shifts up, bonds of successively longer
maturity (duration) are successively more affected.

The monetary policy shock works precisely because it produces a similar “level” effect
in bond returns. A monetary policy shock moves all yields up or down together; it thus
produces a larger change in long-term bond returns than short-term bond returns. This
larger covariance with long-term bond returns can, when multiplied by a factor risk
premium, produce a larger expected return for long term bond returns. (Why monetary
policy shocks move long term bonds so much is an interesting puzzle, but one we do not
address here.)

The interesting part of this result is the strong time-variation in bond expected excess
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returns, and hence in the factor risk premium. Rises in yields mechanically produce
declines in returns, so the sign of the covariance between returns and the shock cannot
change. Hence, given that expected excess returns are sometimes positive and sometimes
negative, the factor risk premium must change sign. Bonds whose prices will decline
when there is a monetary policy shock sometimes earn a positive expected return, and
thus have lower prices than predicted by expectations logic; those same bonds, subject
to the same price decline when there is a monetary policy shock, will at other times earn
a negative expected return, and thus have higher prices than predicted by expectations
logic. It all depends on the state of the economy, as reflected in our tent-shaped linear
combination of forward rates.

Our time-varying risk premium specification results in an affine term structure model
based on a VAR representation for bond yields. Thus, we have constructed an affine
model that can completely capture the predictability of bond returns, and it exactly
reproduces the prices of bonds (or their linear combinations) used as state variables.
Whether or not bond return predictability is consistent with affine models has been a
contentious point in the literature. (See Fisher 1998, Duarte 1999, Duffie 2001 and Dai
and Singleton 2001.) We show that, almost trivially, one can construct an affine model
to mirror complex patterns of bond return predictability including those we find in the
data.

Why have extensive investigations of the term structure of interest rates missed this
return forecasting factor? Most term structure analyses are performed by first fitting
an approximate k−factor model in high frequency data, and then (if at all) looking at
implied one-year forecastability. Two interesting features of the data imply that this
procedure will miss return forecastability.

First, a monthly autoregression raised to the 12th power completely misses the fore-
castability of returns at the one year horizon. The monthly bond data do not follow an
AR(1). Monthly yields are closely approximated by an ARMA(1,1), which suggest an
underlying AR(1) plus i.i.d. measurement error. Though the deviation from an AR(1)
is small, the 12th power magnifies small misspecifications.

Second, the return forecasting factor is almost completely unimportant for describing
prices or yields. “Level” and “slope” factors unrelated to the return forecasting factor
can fit yields with a high degree of accuracy. (Analyses that include maturities less than
a year often find a third “curvature” factor, in order to reconcile maturities longer than a
year with those less than a year. This factor does not have the same shape as our return-
forecasting factor, whose weights are symmetric around the 3 year forward rate.) For
this reason, the return-forecasting factor is not recovered by traditional factor analysis
or maximum likelihood estimation of term structure models. You have to look at excess
return forecasts to see it.

Reduced factor representations are still interesting of course. We find that a three
factor representation, using a ‘level’ and a ‘slope’ factor, deriving ultimately from the
VAR shock covariance matrix, and a return factor deriving from the expected return
regressions, does an excellent job of representing all this information in the term structure.
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Our investigation is a little unusual in that we examine conditionally homoskedastic
discrete time models, rather than continuous time models with heteroskedastic shocks
as is common in the term structure literature. Our specification is closer to the “single
index” or “latent variable” models used by Hansen and Hodrick (1983) and Gibbons
and Ferson (1985) to capture time-varying expected returns. This fact has an important
implication: though many affine models use conditionally heteroskedastic shocks to pro-
duce curved patterns in the term structure and time-varying expected returns, one does
not have to use heteroskedastic shocks to obtain these results. For the expected return
- beta questions we address in this paper, conditional homoskedasticity is not likely to
have a major effect on the results. The covariances of bond returns with yield curve
shocks are really driven by the arithmetic of duration, and do not change sign. Thus,
we will have to understand expected returns that change sign with a risk premium that
changes sign, rather than a covariance that changes sign multiplied by a constant risk
premium. Thus, while time-varying covariances with yield shocks (really, time-varying
variances of the yield shocks) can be part of the story, they must be a secondary part,
and time-varying risk premia must be the most important part of the story. Of course,
since cov(r, η) [λ0(1 + λ1xt)] = cov [r, η(1 + λ1xt)]λ0, where r = return, η = shock, x =
state variable, and λ0,λ1 = parameters, much of what one can express with constant
covariances and a time varying risk premium can be expressed as a changing covariance
and a constant risk premium, with different shocks. Whether modeling conditional het-
eroskedasticity is really important, in the end, will have to be judged by constructing
such a model and seeing whether it gives an importantly different characterization of
expected returns.
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2 Fama-Bliss and beyond

2.1 Notation

We use the following notation. Denote the log price of a n year discount bond at time t
by p

(n)
t

p
(n)
t = log price of n year discount bond at time t.

We use parentheses to distinguish maturity from exponentiation in the superscript. The
log yield is

y
(n)
t = −1

n
p
(n)
t .

We write the log forward rate at time t for loans between time t+ n− 1 and t+ n as

f
(n−1→n)
t = p

(n−1)
t − p(n)t

and we write the log holding period return from buying an n year bond at time t and
selling it as an n− 1 year bond at time t+ 1 as

hpr
(n)
t+1 = p

(n−1)
t+1 − p(n)t .

We summarize the excess return by

hprx
(n)
t+1 ≡ hpr(n)t+1 − y(1)t

We use the same letters without n index to denote vectors across maturity, e.g.

yt =
h
y
(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

i0
hprxt+1 =

h
hprx

(2)
t+1 hprx

(3)
t+1 hprx

(4)
t+1 hprx

(5)
t+1

i0
ft =

h
y
(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t

i0
2.2 Fama-Bliss regressions

Fama and Bliss (1987) run a regression of one-year excess returns on long-term bonds
against the forward-spot spread for the same maturity. The expectations hypothesis
predicts a coefficient of zero — nothing should forecast bond excess returns. The first
panel of Table 1 updates Fama and Bliss’ regressions to include more recent data. We
see in the one-year return regression that the forward-spot spread moves essentially one-
for-one with expected excess returns on long term bonds — the expectations hypothesis
is exactly wrong at the one year horizon.
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1 year returns Change in y(1)

maturity b σ(b) R2 b σ(b) R2

2 1.02 0.27 0.17 -0.02 0.27 0.001
3 1.33 0.36 0.17 0.39 0.34 0.020
4 1.61 0.48 0.18 0.55 0.21 0.063
5 1.18 0.62 0.07 0.75 0.21 0.11

Table 1. Fama-Bliss regressions The “1 year returns” regression is

hprx
(n)
t+1 = a+ b

³
f
(n−1→n)
t − y(1)t

´
+ εt+1.

The “Change in y(1) regression” is

y
(1)
t+n−1 − y(1)t = a+ b

³
f
(n−1→n)
t − y(1)t

´
+ εt+n−1.

Standard errors use the Hansen-Hodrick GMM correction for overlap. Sample
1964:1-1999:12.

Fama and Bliss also run a regression of multi-year changes in the one-year rate against
forward-spot spreads. The expectations hypothesis predicts a coefficient of 1.0 — the
forward rate should be equal to the expected future spot rate (plus a Jensen’s inequality
term). Corresponding to the failure in the left hand panel, the right hand panel of Table
1 shows that the 1-year forward rate (from year one to year two, hence the n = 2 row)
has essentially no power to forecast changes in the one-year rate one year from now.
However, moving down the rows in the right hand column, longer and longer forward
rates correspond more and more to changes in spot rates, so that a 4-year forward rate
is within one standard error of moving one-for-one with the expected change in the spot
rates. This success for the expectations hypothesis means that the 5-year forward-spot
spread does not forecast the four year return on 5-year bonds, though it does forecast
the one-year return on such bonds1.

Fama and Bliss’ regressions are driven by robust stylized facts in the data. When
forward rates are higher than the one-year rate, all rates often rise subsequently, as
predicted by the expectations hypothesis. However, this rise may take 3 years or more
to happen; there can be several years in which the forward rates are above the one-year
rate before the interest rate rise takes place. During these years, holders of long-term
bonds make money. The period since 1987 is a great out-of-sample success for Fama and
Bliss. The regressions have held up well since publication, unlike many other anomalies.
In particular, forward-spot spreads were high in 1990-1993, but interest rates declined,
and so long-term bond holders made money. They lost money when interest rates rose
in 1994, but Fama-Bliss trading rule still made money on average in the post-publication
sample.

1Here and below, we use Fama and Bliss’ start date of 1964:01, and we do not use the more recently
available 1952:6-1963:12 data. A visual inspection of the earlier data suggests a lot more measurement
error, which is natural given the thinner selection of bonds and less interest rate movement. Also, the
results are quite different for this period — for example, the Fama-Bliss coefficients are all -1 rather than
+1 — so at a minimum one needs to think of a time-varying model to include the period.
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2.3 The return-forecasting factor emerges

While Fama and Bliss’ specification is the most sensible for exploring the expectations
hypothesis and its failures, we are more interested in characterizing expected excess bond
returns. For this purpose, there is no reason why only the 4-year forward rate spread
should be important for forecasting the expected returns on 4-year bonds. Other spreads
may matter. Table 2 follows up on this thought by regressing the one-year return on
long-term bonds on all of the forward rates separately.

Coefficients R2

n a y(1) f (1→2) f (2→3) f (3→4) f (4→5) ft ft, ft−1/12
ft+ft−1/12

2
level

2 -2.24 -0.97 0.71 1.13 0.30 -0.88 0.38 0.44 0.44 0.39
3 -3.77 -1.72 0.67 2.97 0.41 -1.86 0.39 0.46 0.45 0.40
4 -5.20 -2.46 0.99 3.49 1.33 -2.75 0.41 0.48 0.48 0.43
5 -6.54 -3.04 1.30 4.00 1.33 -2.85 0.38 0.46 0.45 0.39

Standard errors
2 0.59 0.19 0.47 0.29 0.27 0.18
3 1.11 0.35 0.79 0.46 0.50 0.31
4 1.57 0.50 1.03 0.58 0.66 0.41
5 2.01 0.62 1.24 0.67 0.79 0.51

Table 2. Regression of one year holding period returns on forward rates,
1964:01-1999:12. The regression equation is

hprx
(n)
t+1 = a+ β1y

(1)
t + β2f

(1→2)
t + ...+ β5f

(4→5)
t + ε

(n)
t+1

Standard errors correct for overlapping data. In the R2 column, “ ft” reports
R2 from this regression. “ft, ft− 1

12
” reports R2 from a regression with an

additional monthly lag of all right hand variables. “(ft+ft−1/12)/2” reportsR2

from a regression using a one-month moving average of right hand variables.
“level” reports the R2 from a regression using the level, not log, excess return

on the left hand side, ehpr
(n)
t+1 − y(1)t .

These regressions pick far more than the matched forward-spot spread as the best
regressor for holding period returns. For example, the first line of Table 2 suggests that
the f (2→3)−f (4→5) spread is just as important as Fama and Bliss’ variable, the f (1→2)−y(1)
spread, for forecasting the one-year returns of two-year bonds. These regressions more
than double the R2 from below 0.18 in Table 1 to 0.38-0.41 across all maturities. The 5
year rate R2 is particularly dramatic, jumping from 0.07 in Table 1 to 0.38 in Table 2.The
top panel of Figure 1 graphs the regression coefficients as a function of the maturity on
the right hand side — each row of Table 2 is a solid line of the graph. (For now, ignore the
bottom panel and the dashed line in the top panel.) The plot makes the pattern clear — the
same function of forward rates forecasts holding period returns at all maturities. Longer
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Figure 1: Coefficients in a regression of holding period excess returns on the one-year
yield and 4 forward rates. The top panel presents unrestricted estimates from Table 2.
The bottom panel presents restricted estimates from a single-factor model, from Tables
4 and 5. The legend (2, 3, 4, 5) refers to the maturity of the bond whose excess return is
forecast. The x axis gives the maturity of the forward rate on the right hand side. The
dashed line in the top panel gives the negative of the regression coefficients of the one
year yield on the same right hand variables.

maturities just have greater loadings on this same function. The pattern of coefficients
suggests a tent-shaped factor.

We can, of course, run excess returns on bond yields rather than forward rates. The
fitted values of the regression are exactly the same, since forward rates are linear functions
of yields. The pattern of regression coefficients is less pretty.

One might worry about logs vs. levels; that actual excess returns are not forecastable,
but that the coefficients in Table 2 only reflect 1/2σ2 terms and conditional heteroskedas-

ticity.2 We repeated the regressions using actual excess returns, ehpr
(n)
t+1 − y(1)t on the left

hand side. The coefficients are nearly identical. The last column of Table 2 reports
the R2 from these regressions, and they are in fact slightly higher than the R2 for the
regression in logs.

2We thank Ron Gallant for raising this important question.
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2.3.1 Short rate forecast

Fama and Bliss also run regressions of changes in short rates on forward-spot spreads.
Such regressions are important, since the two ingredients of any term structure model
are short rate forecasts plus risk premia. Table 3 presents regressions that forecast the
one-year rate using all the available forward rates.

Again, these results contrast strongly with the updated Fama-Bliss regressions in
Table 1. The R2 in Table 1 was 0.001%, using the 2 year forward-spot spread as a right
hand variable. (The remaining rows in the right half of Table 1 look at horizons longer
than a year as well as using longer maturity forward rates as regressors.) Using all of the
forward rates in Table 3, the R2 jumps to a substantial 26%. Whereas it appeared that
the one-year change in the one-year rate was completely unpredictable, it now appears
that all the forward rates taken together have substantial power to predict one-year
changes in one-year rates.

The coefficient of one-year rate changes on the lagged one-year rate is still close to
zero. There is a near-unit root in interest rates. Whether one runs the regression in
levels or changes makes no difference, of course, except for the interpretation and value
of R2, and by a difference of 1.0 on the coefficient on y

(1)
t .

lhv y
(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t R2

y
(1)
t+1 − y(1)t -0.026 0.29 -1.13 -0.30 0.88 0.26

y
(1)
t+1 0.974 0.29 -1.13 -0.30 0.88 0.63
Standard errors (same for both regressions):

0.19 0.47 0.29 0.27 0.18

Table 3. Regression of one year yields on forward rates, 1964:01-1999:12.
The regression equation is

lhvt+1 = a+ β1y
(1)
t + β2f

(1→2)
t + ...+ β5f

(4→5)
t + εt+1

where lhv is either the level or the change in the one-year rate y
(1)
t+1 as indi-

cated. Standard errors correct for overlapping data.

The one-year yield regression contains no information that is not already contained
in the holding period return regressions. The holding period return of two year bonds,
which are sold as one year bonds next year, contains a forecast of next year’s one-year
rate. Mechanically,

hprx
(2)
t+1 = p

(1)
t+1 − p(2)t − y(1)t = −y(1)t+1 − p(2)t + p

(1)
t = −y(1)t+1 + f (1→2)t . (1)

Thus, the regression of the one-year yield on our variables should give exactly the negative
of the coefficients of the two year holding period return on the same variables, with a
1.0 difference in the coefficient on f (1→2). We include in Figure 1 the negative of the
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one-year yield forecasting coefficients from the second row of Table 3, and you can see
this pattern exactly.

More deeply, the identity (1) implies that the forward-spot spread equals the change
in yield plus the holding period excess return, and hence, using any set of forecasting
variables,

Et
³
y
(1)
t+1 − y(1)t

´
= f

(1→2)
t − y(1)t −Et

³
hprx

(2)
t+1

´
. (2)

(Fama and Bliss use this identity as well.) In Fama and Bliss’ regressions, the forward-
spot spread corresponds almost one to one to changes in expected returns — both compo-
nents on the right hand side vary, but they vary in equal amounts, so the one-year rate
is unpredictable. Now we have variables that forecast the holding period returns beyond
the forward-spot spread. (2) implies that those variables must also forecast changes in
the spot rate. In this way, the forecastability of the spot rate documented in Table 3
does not mean that the expectations hypothesis is working, it means that the spot rate
must be predictable precisely because the expectations hypothesis is not working.

2.3.2 Additional lags

We investigated whether additional lags of forward rates help to forecast bond returns.
One additional monthly lag does enter with both statistical and economic significance.
In Table 2, we report the R2 of this regression, in the column labeled “ft, ft−1/12.” The
R2 rise by about 0.05 to 0.44-0.48. Rather than add them to a table, Figure 2 plots
the coefficients from these regressions. You can see that the shape of the coefficients
is roughly the same at the first and second lag. The data seem to want a one-month
moving average of forward rates to predict bond returns. We ran a regression with

this restricted specification, i.e. hprx
(n)
t+1 on

³
y
(1)
t + y

(1)
t−1/12

´
/2,

³
f
(1→2)
t + f

(1→2)
t−1/12

´
/2,

etc. Figure 2 includes a plot of the coefficients, and Table 2 includes the R2 in the
column “

¡
ft + ft−1/12

¢
/2.” The R2 is lowered by no more than 0.01 by this additional

restriction, and it is not rejected statistically, so this seems the best way to include the
lagged information.

This finding suggests measurement error in the forward rates, so that the “true”
forward rate is better recovered by the moving average. Additional monthly lags or a
one year lag add little to the regression.

Despite the small increase in forecast power available from an additional lag, we focus
our attention on specifications that use only the current variables ft, as this drastically
simplifies the analysis. Then we return to a treatment of the extra lags, while reconciling
these annual horizon regressions with a monthly VAR representation for bond yields.
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Figure 2: Coefficients in a regression of bond excess returns on the one year yield and
1 to 4 year forward rates, including an extra one-month lag. The top panel plots the
coefficients of hprx

(n)
t+12 on forward rates at time t, while the middle panel plots the

coefficients on forward rates at time t−1/12. The bottom panel presents the coefficients
of hprx

(n)
t+1 on a one month moving average of forward rates at t and at t− 1/12. Sample

1964-1999.

2.4 A single factor for bond expected returns

The pattern of coefficients in Figure 1 cries for us to describe expected excess returns of
bonds on all maturities in terms of a single factor, as follows.

hprx
(n)
t+1 = an + bn

³
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t

´
+ ε

(n)
t+1 (3)

bn and γn are not separately identified by this specification, since you can double all the
bs and halve all the γs. We normalize the coefficients by imposing that the average value
of bn is one, and the average value of an are zero

1

4

5X
n=2

bn = 1;
5X
n=2

an = 0

With this normalization, we can fit (3) in two stages. First, we estimate γ by running
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the regression

1

4

5X
n=2

hprx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + ε̄t+1 (4)

= γ0 + γ0ft + ε̄t+1.

The second equality introduces the notation γ, ft for corresponding 4× 1 vectors. Then,
we can estimate the an, bn by running the four regressions

hprx
(n)
t+1 = an + bn (γ0 + γ0ft) + ε

(n)
t+1, n = 2, 3, 4, 5.

We use GMM standard errors to correct for the fact that γ0ft is a generated regressor,
along with serial correlation due to overlap. We consider the additional restriction an = 0
that the intercepts as well as the slope coefficients follow the single-factor model. This
procedure is consistent. While one can estimate the parameters with somewhat greater
asymptotic efficiency (essentially, using the estimated 30× 30 covariance matrix to find
a weighted sum in (4)) we prefer the clarity of the two-stage OLS procedure.

This is a restricted model. We describe the (4 maturities × (5 right hand variables
+ 5 intercepts) = 25 unrestricted regression coefficients with (4 as + 4 bs + 6 γs -
2 normalizations) = 12 parameters, or, if an = 0 with 9 parameters. The essence of
the restriction is that a single linear combination of forward rates γ0 + γ0ft is the state
variable for time-varying expected returns of all maturities.

Tables 4 and 5 presents the estimated values of γ, a and b.

γ0 γ1 γ2 γ3 γ4 γ5 R2

Estimate -4.44 -2.05 0.91 2.90 0.84 -2.08 0.40
Std. error 1.31 0.41 0.88 0.50 0.55 0.35

Table 4. Estimated common factor in bond expected returns. The regres-
sion is

1

4

5X
n=2

hprx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + ε̄t+1

γ0 has units of annual percent return

The γ1−γ5 estimates in Table 4 are just about what one would expect from inspection
of Figure 1. The loadings bn of expected returns on the common factor presented in Table
5 increase smoothly with maturity. The R2 in Table 5 are the same as in Table 3 to two
significant digits. This fact indicates that the cross-equation restrictions implied by the
model (3) — that bonds of each maturity are forecast by the same portfolio of forward
rates — do no damage to the forecast ability.
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Maturity n an s.e. an +
1
2
σ2n bn s.e. s.e. OLS R2

2 0.11 0.62 0.13 0.47 0.02 0.05 0.37
3 0.09 1.15 0.13 0.86 0.02 0.11 0.39
4 0.01 1.60 0.08 1.23 0.01 0.15 0.41
5 -0.21 1.90 -0.10 1.43 0.03 0.20 0.38

Table 5. Estimate of each excess return’s loading on the return-forecasting
factor. The regression is

hprx
(n)
t+1 = an + bn (γ0 + γ0ft) + ε

(n)
t+1

where hprx denotes bond return less one year rate, γ are the estimates from
Table 4, and f denotes the vector of all forward rates. an has units of percent
annual return. The “s.e.” columns are GMM standard errors. They correct
for the fact that γ is estimated, by considering this estimate together with the
regression of Table 4 as a single GMM estimation. The “s.e. OLS” column
gives conventional standard errors including the Hansen-Hodrick correction
for overlap.

The standard errors that correct for the fact that γ is a generated regressor are much
smaller than the “s.e. OLS” conventional (equation-by-equation) standard errors that
treat γ as a fixed number. The second set of regressions, each holding period return on
the common factor, cannot impose the restriction

P
n bn = 4. That restriction is imposed

in sample by the first regression. Imposing that restriction in sample removes (places on
γ) the largest, common, source of sample variation in bn. Therefore, the correct standard
errors for estimates that impose the restriction

P
n bn = 4 in each sample are smaller

than the standard errors that would occur if γ were known, in which case the restrictionP
n bn = 4 would not hold in each sample.

The bottom panel of Figure 1 plots the coefficients of expected returns on each of the
forward rates implied by the restricted model, i.e. for each n, it presents

£
bnγ1 bnγ2 bnγ3 bnγ4

¤
.

Comparing this plot with the unrestricted estimates of the top panel, you can see that
the one factor model almost exactly captures the unrestricted parameter estimates.

Table 5 suggests that we eliminate the constants in the individual regressions as
well, i.e. that the intercept in each bond return regression is well modeled as the slope
coefficient times the intercept in the average return regression bnγ0. This leaves a truly
one-factor model,

hprx
(n)
t+1 = bn (γ0 + γ0ft) + ε

(n)
t+1.

The coefficients an in Table 5 are tiny. They are an order of magnitude below the standard
errors, so that they are individually significant. Figure 3 plots the intercepts from the
unrestricted regressions and their standard error bars along with the intercepts bnγ0 from
the restricted regression and you can see the excellent fit.

Following this hunch, we repeated the two step estimation of Table 4 and Table 5
with an = 0. The γ estimates and standard errors are of course exactly the same, since
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Figure 3: Restricted and unrestricted intercepts. The unrestricted intercepts are from
the regressions hprx

(n)
t+1 = an + β0nft + ε

(n)
t+1. The restricted intercepts are bnγ0 from

the regressions hprx
(n)
t+1 = bn (γ0 + γ0ft) + ε

(n)
t+1, where γ0 and γ are estimated from

1
4

P5
n=2 hprx

(n)
t+1 = γ0 + γ0ft + εt+1. Error bars are +/- 2 standard errors from the

unrestricted regression.

they are estimated in the first step. The bn coefficients, standard errors, and R
2 are the

same to the decimals indicated in Table 4 and 5. However, overidentifying restrictions
tests presented below reject this specification, so we keep the intercepts an.

If this really is the single factor for expected excess returns, it should drive out
other forecasting variables, and the Fama-Bliss slope variables in particular. Table 6
presents a multiple regression. In the presence of the Fama-Bliss forward-spot spread,
the coefficients and significance of the regression on the return-forecasting factor from
Table 5 are unchanged. The R2 is also unaffected, meaning that the addition of the Fama-
Bliss forward-spot spread does not help to forecast bond returns. On the other hand,
in the presence of the return-forecasting factor, the Fama-Bliss slope is destroyed as a
forecasting variable. The coefficients decline from 1 or even more to almost exactly zero,
and are insignificant. Clearly, the return-forecasting factor subsumes all the predictability
of bond returns captured by the Fama-Bliss forward-spot spread.
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maturity n bn σ(bn) cn σ(cn) R2

2 0.47 0.03 -0.04 0.19 0.37
3 0.87 0.09 -0.06 0.35 0.39
4 1.21 0.15 0.05 0.44 0.41
5 1.42 0.15 0.14 0.32 0.38

Table 6. Multiple regression of holding period returns on the return-
forecasting factor and Fama-Bliss slope. The regression is

hprx
(n)
t+1 = an + bn (γ0 + γ0ft) + cn

³
f
(n−1→n)
t − y(1)t

´
+ ε

(n)
t+1.

Standard errors corrected by GMM for overlap.

Figure 4 plots the forecast of the holding period excess returns on three year bonds
implied by the Fama-Bliss regression of Table 1 (top), the forecast from the regression
on the return-forecasting factor from Table 3 (middle, i.e. a3 + b3 (γ0 + γ0ft)) and the
actual holding period returns (bottom). For many episodes, you can see that the return-
forecasting factor and the forward-spot spread agree. This pattern is particularly visible
in the three swings from 1975 to 1982. The return-forecasting factor is correlated with
the forward-spot spread. However, you can also see the much better fit of the regression
using the return-forecasting factor in the middle. In particular, the fit is much better
through the turbulent early 1980s and the mid 1990’s. The improved R2 is not driven
by spurious forecasting of one or two unusual data points.

Stambaugh (1988) ran similar regressions of 2-6 month bond excess returns on 1-6
month forward rates. Stambaugh’s coefficients are quite similar to the pattern in Figure
1. (See Stambaugh’s Figure 2, p. 53.) In the basic regression, Stambaugh found that
the matched-maturity forward-spot spread rate — the Fama-Bliss variable — remained
the single strongest predictor for excess returns in this multiple regression. However,
Stambaugh rightly suspected measurement error — if a bill has a bad price, then the
spurious “spread” gives rise to a spurious “return” in the next period. Stambaugh then
used a slightly different bill as predictor and predicted variable. This specification resulted
in estimates that look a lot like Figure 1. Stambaugh soundly rejected a one or two factor
representation of this forecast.

2.4.1 Tests

This section is very preliminary — this is the method, but we don’t trust the numbers

We need a test of the one-factor model and a test of the constant restrictions. The
underlying moments are the regression forecast errors multiplied by forward rates (right
hand variables),

E

µ·
εt+1

εt+1 ⊗ ft
¸¶

= 0 (5)
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Figure 4: Fitted and actual holding excess returns of three year bonds. Top: Fitted value
using Fama-Bliss regression, 3 year forward-spot spread. Middle: Fitted value using the
restricted regression on all forward rates. Bottom: ex-post excess returns. The forecasts
in the top two lines are graphed at the date of the return; the forecast made at t − 1
is graphed at year t to line up with the ex-post return at year t. The top and bottom
graphs are shifted up and down 15% for clarity.

where εt+1 denotes the 4 × 1 vector of holding period return regression residuals, and
ft denotes the 5 × 1 vector of the one-year yield and four available forward rates. The
unconstrained regression of Table 2 sets all of these moments to zero in each sample.

The single factor model with constants (an 6= 0) sets only certain linear combinations
of these moments to zero

γ0 : E [104εt+1] = 0 (6)

γ : E [(104εt+1)⊗ ft] = 0
a : E [εt+1] = 0 (7)

b : E [εt+1 ⊗ (γ0ft)] = 0 (8)

where 14 denotes a 4× 1 vector of ones.(We have indicated which parameter is identified
by each moment before the colon.) We used the moments (6) to compute the second set
of standard errors in Table 5.
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The single factor model with no additional constants (a = 0) sets

γ0 : E [104εt+1] = 0 (9)

γ : E [(104εt+1)⊗ ft] = 0 (10)

b : E [εt+1 ⊗ (γ0 + γ0ft)] = 0 (11)

For both restricted models, we can compute the χ2 test that the remaining moments
in (5) are zero, which we denote the JT test in Table 7. Denoting the sample moments by
gT the test is g

0
T cov(gT )

+gT ˜ χ
2
rank(cov(gT ))

where + denotes a pseudo-inverse. (Details in

the appendix.) We can also use the variance covariance matrix of estimated parameters
from less restricted models to test the parameter restrictions of more restricted models,
which we label a Wald test in Table 7.

Table 7 collects our test results. The single factor model with free intercepts seems a
great success, with a χ2 value of 5 and 16 degrees of freedom. However, the Wald test of
its parameter restrictions is decisively rejected with an enormous p value.

The single factor model with restricted intercepts fails its overidentifying restrictions
test with a 77 χ2 value and 16 degrees of freedom. The Wald test of the same parameter
restrictions, based on the unconstrained parameter variance-covariance matrix, also dra-
matically rejects with a 478 χ2 value. Puzzlingly, the additional restriction of this model,
that the intercepts a are zero, is decisively not rejected, with a χ2 value of only 0.014,
exactly as Figure 3 suggests. But if this, its only extra restriction, is not rejected, why
does the model with a = 0 fare so much worse than the model with a 6= 0? The next row
suggests the answer: when you constrain the intercept, it affects the slope coefficients;
these have much smaller standard errors than the intercept, so the slope restrictions are
violated when we constrain the intercept.

Wald tests based on the parameter variance covariance matrix from the single factor
model with a 6= 0 rather than the completely unrestricted regressions paint a different
picture. Here, the a = 0 restriction is not rejected, (finally!) at a sensible p-value of 54%.
This time the slope restrictions are also not rejected, as we might have expected given
the good vidual indication of the fit. However, the joint test that the intercepts are zero
and the small changes in the slope coefficients that result when the intercept is restricted
to zero now rejects.
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Test type Hypothesis χ2 dof %p
1. Single factor model with a 6= 0
JT 5 16 98
Wald from unrestricted β = bγ0 1,1074 20 0
2. Single factor model with a = 0
JT 77.6 16 0.00
Wald from unrestricted, a = 0 and β = bγ0 478 24 0
Wald from unrestricted, α = bγ0 (i.e. a = 0) 0.014 4 99.9
Wald from unrestricted, β = bγ0 1,117 20 0

Wald from a 6= 0 model, a = 0 3.08 4 54
Wald from a 6= 0 model, bunr = brestr 0.58 4 96
Wald from a 6= 0 model, a = 0 and bunr = brestr 27.3 8 0.06

Table 7. Model tests. The single factor model is hprxt+1 = a + b(γ0 +
γ0ft)+εt+1 In the first panel it is estimated imposing a = 0 in the second panel
it is estimated allowing a 6= 0 (which also affects the b estimates, leading to
the difference between bunr and brestr). The unrestricted model is hprxt+1 =
α+βft+εt+1. JT tests are tests that the moments not set to zero in estimation
are in fact zero after accounting for sampling errors. Wald tests use the
variance covariance matrix of parameter estimates in less restricted models
to test the restrictions of more restricted models.

In summary, these tests do not paint a clear picture. Wald and overidentifying restric-
tions tests do not agree, and Wald tests from different models do not agree. We suspect
that the asymptotic statistics — based on a 30× 30 moment matrix and 12 monthly lags
in the spectral density matrix — are simply not reliable in our sample.

2.4.2 Additional Lags

Following up on the unconstrained regressions with additional monthly lags in Figure 2,
we run bond returns on additional lags of the state variable γ0ft. Table 8 presents the
results.

Regression 1 repeats the regression of holding period excess returns on (γ0ft) from
Table 5 for comparison. In the second regression, we add an additional lag

¡
γ0ft−1/12

¢
.

The R2 now jumps up to 0.43-0.46, nearly equal to the 0.44-0.48 values from the uncon-
strained two-lag regression in Table 2. Once again, the single factor seems to capture
all of the information in all 5 forward rates. The coefficients in the second regression
are about half of the coefficients in the first regression, and the new coefficients have the
same pattern across maturities. The data again suggest γ0

¡
ft + ft−1/12

¢
/2 as a state

variable, and the third regression checks this specification. The additional constraint on
the coefficients makes no difference whatever to the R2, and the coefficients themselves
are very close to the value in the first regression.
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The fourth regression investigates an additional lag. The pattern of coefficients seems
similar, and the coefficients seem to be dying off. Though the additional coefficients
are statistically significant (not shown), adding a second monthly lag raises the R2 by
no more than 0.02. Adding a one-year lag (not reported) does absolutely nothing for
the R2 of the regression. We conclude that the moving average of the first two lags is
a good robust specification, though one may want to consider additional lags with an
autoregressive pattern. We argue below that this pattern suggests an ARMA(1,1) model
for monthly yields induced by i.i.d. measurement error.

(1) (2) (3) (4)

γ0ft R2 γ0ft γ0ft−1/12 R2
γ0(ft+ft−1/12)

2
R2 γ0ft γ0ft−1/12 γ0ft−1/12 R2

hprx
(2)
t+1 0.46 0.37 0.26 0.27 0.43 0.53 0.43 0.21 0.21 0.12 0.44

hprx
(3)
t+1 0.86 0.39 0.50 0.47 0.44 0.97 0.43 0.42 0.34 0.24 0.45

hprx
(4)
t+1 1.23 0.41 0.74 0.65 0.46 1.38 0.46 0.64 0.50 0.29 0.47

hprx
(5)
t+1 1.45 0.38 0.74 0.92 0.44 1.66 0.44 0.60 0.71 0.42 0.46

Table 8. Estimate of each excess return’s loading on the return-forecasting
factor. The left hand variable is shown in each row heading and the right hand
variables are shown in the column headings. γ are the estimates from Table
4. OLS on overlapping monthly data 1964-1999.

2.4.3 Subsamples

Table 9 reports a breakdown by subsamples of a regression of average holding period
returns 1

4

P5
n=2 hprx

(n)
t+1 on yields and forwards. The first set of columns run the average

return on the yields and forwards separately. The second set of columns runs the average
return on γ0f where γ are estimated from the full sample. This regression moderates
the tendency to find spurious forecastability with 5 right hand variables in short time
periods.

The first row reminds us of the full sample result — the pretty tent-shaped coefficients
and the 0.40 R2. Of course, if you run a regression on its own fitted value you get a
coefficient of 1.0.

The second set of rows break down the regression into the period before, during, and
after the momentous period 1979:8-1982:10, when the Fed changed operating procedures,
interest rates were very volatile, and inflation became much less volatile. The broad
pattern of coefficients is the same before and after. The R2 is a little lower in the
inflationary period. This suggests that real holding period excess returns are better
forecast by yield curve movements in an environment such as after the great monetary
experiment, in which real interest rate movements are more important than inflation
in driving the term structure. The 0.77 R2 looks dramatic in the experiment, but this
period really only has three data points and 5 right hand variables. When we constrain
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the pattern of the coefficients in the second set of columns, the R2 is the same as the
earlier period.

The third set of rows break down the regression by decades. Again, we see the pattern
of the coefficients is quite stable. The R2 is worst in the 70s, a decade dominated by
inflation. It is a dramatic 0.70 in the 90s, and even 0.51 when we constrain the coefficients
γ to their full sample values. Again, this suggests that the forecasts have greatest power
when return shocks are real rather than nominal.

y(1) f (1→2) f (2→3) f (3→4) f (4→5) R2 γ0f R2

1964:01-1999:12 -2.0 0.9 2.9 0.8 -2.1 0.40 1 0.40
1964:01-1979:08 -1.3 1.3 2.5 -0.1 -1.7 0.31 0.74 0.28
1979:08-1982:10 0.8 0.5 1.2 0.6 -0.7 0.77 0.80 0.28
1982:10-1999:12 -1.7 1.6 1.2 1.7 -2.3 0.35 1.01 0.33
1964:01-1969:12 -1.3 0.2 2.0 0.5 -1.9 0.30 0.70 0.24
1970:01-1979:12 -1.4 0.5 2.4 0.3 -0.6 0.22 0.69 0.17
1980:01-1989:12 -2.2 1.5 2.6 1.0 -1.8 0.42 1.11 0.37
1990:01-1999:12 -1.6 0.5 4.3 1.5 -2.5 0.70 1.69 0.51

Table 9. Subsample analysis of average return forecasting regressions.
The first set of columns present regression

1

4

5X
n=2

hprx
(n)
t+1 = γ0 + γ0ft + εt+1

The second set of columns report a regression 1
4

P5
n=2 hprx

(n)
t+1 = a+b (γ

0ft)+
εt+1 using the γ parameter from the full sample regression, as presented in
the top row. Overlapping annual forecasts using monthly data.

2.5 Macroeconomics and bond return forecasts

Figure 4 already shows that the return-forecasting factor is highly correlated with the
slope of the term structure, which is well known to be associated with recessions (Fama
and French 1989) and to forecast output growth (Harvey 1989, Stock and Watson 1989,
Estrella and Hardouvelis 1991, Hamilton and Kim 1999).

We discover a surprising difference between the return forecasting factor and the
term structure slope. The return forecasting factor, like the slope, is highly correlated
with business cycle measures. However, the forecasting relations are lost. Business cycle
measures have no power alone, and even less in competition with the return forecasting
factor, to forecast bond returns. Worse, the return forecasting factor loses the slope’s
ability to forecast output. Apparently, the component of the slope of the term structure
that forecasts excess returns has nothing to do with the component that forecasts output.
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2.5.1 Correlation between the return forecast and business cycles

Figure 5 presents the return forecasting factor together with the unemployment rate and
the NBER peaks and troughs. The return-forecasting factor is closely associated with
business cycles, high in bad times and low in good times. The graph shows the very nice
correlation between the return forecasting factor and recessions. As Fama and French
(1989) document for the yield curve slope, the time-varying expected return is clearly
related to business cycles.

1965 1970 1975 1980 1985 1990 1995 2000
-3

-2

-1

0

1

2

3

4
Return forecast
Unemployment   

Figure 5: Return forecasting factor γ0ft and unemployment rate. Both series are trans-
formed to [xt−E(x)]/σ(x) so that they fit on the same graph. The teeth at the bottom
represent NBER business cycles.

Interestingly, the correlation is also evident at lower frequencies than usual business
cycles. The return forecasting factor increases throughout the 70s and decreases through-
out the 80s, mirroring the unemployment rate as it does many measures of a decade long
drop in productivity during that period. The bond return forecasting factor is a “level”
variable rather than a “growth rate” variable. It is high when the level of unemployment
is high, or the level of income is low, rather than being high during recessions defined
as periods of poor GDP growth. The return forecasting factor is correlated with many
other recession indicators as well, including industrial production growth, Lettau and
Ludvigson’s (1999) consumption/wealth ratio, the investment/GDP ratio, and so on. It
is much less correlated with inflation. We present the graph for unemployment as it has
the highest correlation among the cyclical indicators we examined.
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2.5.2 Macroeconomic forecasts of bond returns

Given the high correlation between the return factor and the unemployment rate, a
natural question is whether we can use unemployment or other macro variables to forecast
excess returns on bonds. The answer is no, or at least “not among the variables we have
tried so far.”

This is an unfortunate result for economic interpretation. It would be much nicer if
we could understand the return forecasting factor as a simple mirror of macroeconomic
conditions. It appears instead that the bond market uses additional information to
forecast bond returns. On the other hand, it is a fortunate result for our empirical
analysis: it means we can stick to the model Et (hprxt+1) = a+bγ

0ft with great accuracy,
even in VAR systems that include macroeconomic variables.

Table 10 contrasts regressions of the average one year bond excess return 1
4

P5
n=2 hprx

(n)
t+1

on the return forecasting factor γ0f , on the unemployment rate U and other macroeco-
nomic variables. The first part of the table reminds us of the 0.40 and 0.45 R2 when we
forecast bond excess returns from γ0f . Despite its beautiful correlation with the return
forecasting factor, unemployment forecasts bond excess returns with an R2 of only 0.06.
In a multiple regression it does not affect the size and significance of the γ0f coefficient,
and only raises the R2 to 0.42.

The Stock-Watson (1989) leading index is designed to forecast output growth at a
6 month horizon. Alas, it forecasts bond excess returns with an even lower R2 of 0.01
and has no effect in a multiple regression. Lettau and Ludvigson’s (2001) consumption-
wealth ratio, which forecasts income growth and stock returns, does no better. Finally,
cpi inflation is just as useless as the variables. A large variety of macroeconomic variables
do no better.

γ0f γ0f−1 R2 γ0f U R2

1 0.40 0.66 0.06
(8.0) (1.9)
0.56 0.58 0.45 1.17 -0.48 0.42
(6.4) (5.3) (7.7) (-1.5)

γ0f XLI R2 γ0f cay R2 γ0f cpi R2

-0.12 0.01 0.79 0.05 -0.24 0.03
(-0.6) (2.3)

1.01 -0.16 0.41 0.97 0.30 0.40 0.99 -0.18 0.41
(7.4) (-1.4) (7.3) (1.1) (8.5) (-0.9)

Table 10. Forecasts of average bond returns 1
4

P5
n=2 hprx

(n)
t+1. Ut = the

unemployment rate. XLI = Stock-Watson leading indicator. cay = the
Lettau-Ludvigson consumption-wealth ratio using end of period wealth. cpi
is inflation, the one-year growth in the cpi index. We estimate γ0f by running
the regression 1

4

P5
n=2 hprx

(n)
t+1 = a+ γ0ft + εt+1 in a first stage. Overlapping
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annual forecasts, 1964:01-1999:12 Standard errors corrected for overlap and
heteroskedasticity by GMM.

2.5.3 Term structure forecasts of output growth

The slope of the term structure slope forecasts output growth as well as bond returns.
How does the return forecasting factor γ0f forecast output growth? Table 11 presents
regressions. The left hand panel forecasts industrial production, while the right hand
panel forecasts growth in Stock and Watson’s coincident index. The table verifies that
the term structure slope y(5)−y(1) forecasts both output growth measures, with statistical
significance and R2 of 0.16-0.17. The Stock-Watson leading index, which includes term
structure variables as well as a variety of other macroeconomic variables, does even better,
with stunning t statistics and R2 of 0.39-0.44.

Surprisingly, though, the return forecasting factor is a miserable failure at forecasting
output growth. The coefficients are tiny and insignificant, the R2 almost vanish. The
return factor is correlated with the yield spread, and the return factor forecasts bond
returns much better, but it nonetheless loses any ability to forecast output growth. Ap-
parently, the component of the yield spread that forecasts output growth is uncorrelated
with the component that forecasts bond excess returns.

industrial production coincident index
γ0f y(5) − y(1) LI R2 γ0f y(5) − y(1) LI R2

0.060 0.01 0.063 0.002
(0.19) (0.29)

-0.83 0.17 -0.58 0.16
(-3.0) (-2.5)

0.88 0.39 0.67 0.44
(9.3) (10.5)

0.32 0.70 -0.67 0.46 0.23 -0.44 0.55 0.50
(1.7) (7.2) (-3.0) (2.2) (-3.0) (7.1)

Table 11. Regression forecasts of one-year industrial production growth
and one-year growth in the Stock-Watson coincident index on the bond return
forecasting factor γ0f , the term spread y(5) − y(1), and the Stock-Watson
leading index. overlapping annual forecasts, 1964:01-1999:12 Standard errors
corrected by GMM.

2.5.4 Forecasting stock returns

The slope of the term structure forecasts stock returns, as emphasized by Fama and
French (1989). Table11.1 evaluates how well our return forecasting factor forecasts stock
returns.
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The first 4 regressions remind us of return forecastability from the dividend price
ratio and term spread. Regressions 1 and 2 study the dividend price ratio. Until the
1990s, the dividend price ratio was a strong return forecaster, with a 14% R2. The long
boom of the 1990s has cut down this forecastability dramatically, especially in our rather
short sample (for these purposes) starting only in 1964. Of course, one good crash will
restore the d/p forecastability. The term spread in the third regression forecasts the
VW stock return with a 4.6 coefficient — one percentage point term spread corresponds
to .4.6 percentage point increase in stock return. The R2 is only 6.2% however. The
fourth regression shows that the term spread and dividend price ratio forecast different
components of returns, since the coefficients are unchanged in multiple regressions and
the R2 increases, though to a still low 8.8%.

Regression # d/p y(5) − y(1) γ0f R2(%)
1 2.5 2.0

(0.81)
2: 1964-1989 6.97 14.4

(2.43)
3 4.6 6.2

(1.8)
4 2.8 4.8 8.8

(0.97) (2.0)
5 1.87 8.9

(2.7)
6 2.0 1.46 9.7

(0.69) (1.82)
7 (1.00) 1.76 9.2

(0.37) (2.79)

8 y
(1)
t , f

(1→2)
t , f

(2→3)
t , f

(3→4)
t , f

(4→5)
t 13.7

Table 11.1. Stock return forecasts. The left hand variable is the one-year
return on the value-weighted NYSE stock return, less the one year bond yield.
The right hand variables are as indicated in the column headings. Overlapping
monthly observations of annual returns, 1964-1999. The dividend price ratio
is based on the return with and without dividends for the preceding year. T
statistics in parentheses. Standard errors are corrected for overlap.

The fifth regression introduces the return forecasting factor. It is significant, which
neither d/p (in this sample) nor the term spread are, and at 8.9%, its R2 is slightly
higher than that of the term spread and d/p combined. The coefficient is 1.87. The
return forecasting factor is the average expected return across 2-5 year bonds. The 5
year bond in Table 5 had a coefficient of 1.43 on the return forecasting factor. Thus, the
stock return coefficient is just about what would expect of a 6 or 7 year duration bond,
which is perfectly sensible.
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The sixth and seventh regressions compare the bond return forecasting factor with
the term spread and d/p. The bond return factor’s coefficient and significance are hardly
affected in this multiple regression, while the d/p and term coefficients are cut in half and
rendered very insignificant. It seems that the bond return forecasting factor subsumes
most of the term spread and d/p’s power to forecast stock returns.

Last, we ask whether a regression of stock returns on all forward rates produces a
better fit than on the return forecasting factor, and whether such a regression recovers
the tent-shaped pattern of coefficients all on its own. Of course, this estimate will be
noisy, since stock returns are more volatile than bond returns. All forward rates together
produce an R2 of 13.7%. Figure 6 graphs the coefficients, along with the return fore-
casting factor coefficients γ, and two standard error bands. The stock return forecasting
coefficients have the same general tent shape, though not exactly the same as those of
the return forecasting factor. The 2-1 forward spread seems to enter more than it does
for the return forecasting factor.
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Figure 6: Coefficients in a regression of one-year value weighted NYSE stock excess
returns on all forward rates (dashed line, triangles) and average bond excess returns on
all forward rates (solid line, circles). Error bars are +/- two standard errors.
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3 Risk premia

Seeing a pattern in expected returns, we naturally want to relate that pattern to covari-
ances. The central parable of finance explains expected returns by their covariance with
shocks to factors, or, in logs,

Et(hprxt+1) = covt(hprxt+1, ε
0
t+1)λt −

1

2
σ2t (hprxt+1) (12)

where hprxt+1 denote the (4× 1) vector of excess log returns, εt+1 is a vector of orthogo-
nalized shocks to pricing factors (proxies for marginal utility), and λt is a vector of factor
risk premia or market prices of risk.

3.1 Calculating market prices of risk

Let C denote the covariance matrix of returns with shocks,

C = covt(hprxt+1, ε
0
t+1).

In an exactly identified models with as many shocks as returns, we can solve for λt
by simply premultiplying (12) by C−1. Of course, we will look for elements of λt that
seem close to zero, suggesting the traditional specification with only a few factors. We
also examine underidentified situations with more shocks than returns. For example,
in a VAR using yields on 1-5 year bonds, there are potentially 5 shocks and 4 returns.
Including macroeconomic variables increases the number of shocks. In these cases, C is
not invertible. CC 0 still is invertible so we can find a solution

λt = C
0(CC 0)−1

·
Et(hprxt+1) +

1

2
σ2t (hprxt+1)

¸
. (13)

This solution is not unique. With more shocks than returns, many different λt can
exactly relate expected returns with covariances. We characterize the properties of this
identification in Proposition 3 below.

The market prices of risk λt also depend on how shocks are orthogonalized, as the
C matrix will reflect the orthogonalization. When underlying shocks are correlated,
the order of orthogonalization will determine how the market price of their common
component is assigned to one or the other shock. We orthogonalize our shocks with the
most interesting ones first, in order to let as much of the market price of risk reflect the
interesting shocks as possible.

We have a model for expected returns,

Et (hprxt+1) = a+ b (γ0 + γ0ft) . (14)

We start by studying VAR type specifications with constant conditional shock variances
and covariances. Plugging (14) in (13), we can calculate the risk premia λt for these
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specifications by

λt = C
0(CC 0)−1 [a+ b (γ0 + γ0ft)] + C 0(CC 0)−1

1

2
σ2t (hprxt+1)

or, compactly,

λt = λ0 + δ (γ0 + γ0ft) (15)

λ0 = C 0 (CC 0)−1
µ
a+

1

2
σ2t (hprxt+1)

¶
(16)

δ = C 0 (CC 0)−1 b. (17)

If we use all the forward rates as state variables in forecasting returns,

Et (hprxt+1) = a+Bft,

rather than the restricted model (14), λt will depend on all of the forward rates ft, e.g.
λt = λ0 + λ1ft where λ1 is a 4 × 5 matrix. The one-factor structure we have found for
expected excess returns carries over and gives a nice one-factor structure to the time-
varying risk premium.

3.2 Discount factors and affine models

The fundamental parable of finance is often stated in terms of a stochastic discount factor
rather expected returns. Equation (12) is equivalent to a stochastic discount factor of
the form

mt+1 = e
−y(1)t − 1

2
λ0tEt(εt+1ε0t+1)

−1λt−λ0tεt+1. (18)

With this discount factor and conditionally normal log returns and shocks, 1 = Et (mt+1Rt+1)
where R denotes the level (not log) return is equivalent to (12). Thus, in calculating λ,
we are also characterizing a stochastic discount factor that captures bond returns.

Thinking about bonds in terms of one-period expected return-beta representations,
or even one-period discount factors, has a decidedly old-fashioned flair. Most of the vast
term structure literature studies bond prices and yields rather than returns, in the context
of explicit and typically affine models. An affine model is lurking here however, and by
calculating λ we are also implicitly finding the market prices or risk and risk-neutral
probabilities that define an affine model.

Proposition 1. Let Xt denote a vector of state variables that follows Xt = µ+φXt−1+
Σεt, with i.i.d. normally distributed shocks εt and E(εtε

0
t) = I. Let the short rate y

(1)
t

be included in the state vector Xt, y
(1)
t = e0Xt. Let mt+1 be as given by (18), where

λ is a linear function of Xt, e.g. λt = λ0 + λ01Xt. Then bond prices, generated by
ep

(n)
t = Et(mt+1mt+2...mt+n) are linear functions of the state variables, i.e. we can find

An and Bn such that

p
(n)
t = An +B

0
nXt. (19)
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The affine model is equivalent to risk-neutral pricing with distorted probabilities

φ∗ ≡ φ− Σλ1 (20)

µ∗ ≡ µ− Σλ0. (21)

Yields and forward rates are of course also linear functions of the state variables. The
proof consists simply of algebra; grind out the conditional expectation that defines bond
prices and derive the linear form. We present it in the Appendix.

Intuitively, the conditional heteroskedasticity of the discount factor results in time-
varying risk premia that are linear functions of the state variables as in the continuous-
time setups of Fisher (1998) and Dai and Singleton (2001). Ang and Piazzesi (2001)
study a similar discrete-time affine model.

Often the state variable includes bond prices or yields; in fact often the state variable
consists only of prices or yields. Now we have a tricky identification problem to solve: we
have to make sure that the bond prices p

(n)
t that come out of the model are the same as

the state variables p
(n)
t that go in the model. For example if the price p

(n)
t is included in

the state variable Xt, then we must choose λt so that An = 0 and Bn is the vector that
recovers p

(n)
t from Xt. In our case, however, this problem is solved by the identification

(13):

Proposition 2. Suppose Xt contains a full set of prices, i.e. suppose that we can
recover prices of 1 through N period bonds from Xt by [ p

(1)
t p

(2)
t .. p

(N)
t ] = PXt. Then,

λt calculated by ( 13) form a self-consistent affine model; the predicted bond prices by ( 19)
are the same as those recovered directly by PXt.

Formula (13) requires a full set of returns, but if you have a full set of prices you
have a full set of returns as well as yields and forward rates. Again, the proof is in the
Appendix. It is possible to find a set of λt = λ0 + λ1Xt that form a self-consistent affine
model even when X does not include a full set of returns, but the procedure is a bit more
complicated than our simple formula (13).

3.2.1 Implications

This connection to affine models has important implications for our calculations, beyond
just showing that there is such a connection and we are not hopelessly out of date in
studying expected return-beta models.

First, many papers have been written on the subject whether one can construct affine
models that are consistent with bond return predictability, and the Fama-Bliss (1987)
regressions in particular. Examples include Dai and Singleton (2001), Duffee (2001) and
Duarte (1999). If Fama and Bliss’ 0.15R2 poses problems, one might think our 0.45R2 are
fatal. Proposition 2 and our formulas for λ show that nothing of the sort is true. We can
construct market prices of risk λt that capture Fama and Bliss’ regression evidence, our
much stronger regression evidence, or much more complex return forecasting regressions.
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Furthermore, the model, by construction, exactly reproduces the bond prices, yields, or
forward rates that are used as state variables. One may choose to examine specifications
with a restricted number of factors, but this is not necessary. We can construct a model
with zero pricing errors.

Second, not only is the term structure model affine, it is homoskedastic. Many affine
models also include conditional heteroskedasticity of the shocks. In those models, ex-
pected return variation and curvature of the yield curve are tied to changes in conditional
volatility. It’s tempting to conclude that expected return variation and curvature must
come from changing conditional volatility, but the propositions show that is not the case.
(Conditionally heteroskedastic models may be important in fitting the data of course,
and some time-varying risk premium may in fact be time-varying risk. On the other
hand such models are often more complex, especially in discrete time. Our point here is
that we do not have to study conditionally heteroskedastic models in order to fit yields
and expected returns.)

In fact, the market prices of risk λ to make all this happen are underidentified. Lots
of other choices would work as well. The choice we pursue has the following properties,
familiar from Hansen and Jagannathan (1991) and Cochrane and Saá-Requejo (1999),
and proved in the appendix:

Proposition 3. Among all market prices of risk λt that price the available bond
returns, or (equivalently) that produce a self-consistent affine model with yields as state
variables, the market prices of risk defined by ( 13) produce the minimum size λ0tλt, the
discount factor with minimum volatility, and the minimum value of the maximum Sharpe
ratio. They set to zero the prices of risk λt of any shock uncorrelated with bond returns.

3.3 Yield curve shocks: an exact identification

Equations (15)-(17) tell us how to calculate market prices of risk λ. All that remains
is to choose an interesting set of shocks εt. Eventually, we want to tie the shocks εt to
macroeconomic risks. However, it is an interesting first step to describe expected returns
in terms of covariances with factor-mimicking portfolios; i.e. a simple and interpretable
set of portfolios such as the market return, or the size and book-to-market portfolios
that describe stock returns. A natural set of bond shocks are the “level,” “slope,” and
perhaps “curvature” factors that describe much of the variation in the term structure.
Thus we ask questions such as, “Are expected returns compensation for holding “level”
risk or “slope” risk?”

We follow the latent variable tradition started by Hansen and Hodrick (1983) to
identify yield curve shocks that exactly generate our time-varying expected returns. If
you have a vector of expected returns, you can always construct a single index model;
you can find a single (ex-post mean-variance efficient) portfolio such that the expected
return of each asset is a linear function of the covariance of that asset’s return with
the chosen portfolio. The portfolio has N weights, and there are N expected returns to
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match. Hansen and Hodrick noticed that the same point holds with a single factor model
of time-varying expected returns.

Et(hprxt+1) = b (γ0 + γ0ft)

where hprx and b are 4× 1 vectors. Given this model for expected returns, we can find
a single combination of return shocks so that conditional mean returns line up perfectly
against covariances of returns with that linear combination of shocks, multiplied by a
time-varying factor risk premium linear in γ0f . We just have to find a portfolio with
shocks η such that cov(hprxt+1η) = b.

In this way, we can construct a single factor—a single combination of yield curve
shocks—that exactly explains our time-varying expected returns, and then interpret it,
rather than try various shocks to see which ones produce covariances that explain time-
varying expected returns. We can foresee that this procedure will lead to a “level”
shock. The b coefficients rise steadily with maturity. Thus, our “factor” must produce
covariances with returns that rise steadily with maturity. An upward shift in the entire
yield curve is precisely such a factor.

We extend this idea to allow for the conditional variance term and a constant that
may not exactly follow the single index model. Our model of time-varying expected
returns is

Et(hprxt+1) +
1

2
σ2t (hprxt+1) = ã+ b (γ0 + γ0ft)

We show below how to construct two orthogonal yield curve shocks ηit+1 = w
0
i (yt+1 −Etyt+1)

and two factor risk premia, one time varying and the other constant

λ1t = λ10 + δ (γ0 + γ0ft)

λ2t = λ20

that exactly capture our model of bond expected returns, i.e. such that

Et(hprxt+1) +
1

2
σ2t (hprxt+1) = cov(hprxt+1η

1
t+1)λ

1
t + cov(hprxt+1η

2
t+1)λ

2
0. (22)

If ã = 0 and expected returns (plus the variance term) follow a true single-index model,
our representation collapses to

Et(hprxt+1) +
1

2
σ2t (hprxt+1) = cov(hprxt+1η

level
t+1 ) δ (γ0 + γ0ft) .

The second shock and factor risk premium are only there to capture deviations from the
exact single-index model, ã = 0.

Figure 7 shows how yields move in response to each of our two orthogonal yield curve
shocks. Obviously, we can label the first shock a “level” shock and the second shock a
“slope” shock, and we use these labels rather than “1” and “2” below. The level shock
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Figure 7: How yields move in response to the two yield curve shocks.

is not exactly level, which is fortunate since parallel shifts in the term structure violate
arbitrage.

Table 12 presents how bond returns (rather than yields) are affected by each shock.
These are also the covariances and betas, since the shocks are orthogonal and have unit
variances. An upward level shock produces a negative return, and more and more so for
longer maturities. This pattern of betas is of course exactly what we need to explain
the strong rise in conditional mean returns across maturities when γ0f is high, and the
smaller rise in unconditional mean returns across maturities as well. The slope factor
does exactly what a slope factor should do, raising the returns of short term bonds and
lowering those of long-term bonds

Maturity
Shock 2 3 4 5
level -1.5 -2.8 -3.7 -4.6
slope 0.3 0.08 -0.44 -0.89

Table 12. Effect of level and slope shocks on bond excess returns.

We estimate λlevel0 = 0.0028, δ = 2.22, λslope0 = 0.0004 ( and, by assumption δslope =
0.) The units are annual percent excess returns. The numbers suggest that the single
index model with λlevel0 = 0 and no premium for the slope shock will be an excellent
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approximation. The sign also makes sense. A shock that raises yields, lowers returns,
and you get a positive premium for holding such shocks.

Table 13 shows how these covariances and factor risk premia add up to explain ex-
pected returns. The table starts at the sample mean value of γ0f . The first row shows
the expected return to be explained by covariances. The numbers remind us of the slight
upward slope in bond returns. Half of the slope (39 basis points) comes right away in
the two year bond excess return, and then average returns increase slowly out to 72 basis
points for 5 year bonds. Rows 2-4 break up this expected return into components. α̃
gives the deviation from the exact single factor model, and 1/2σ2 gives the variance term.
b [γ0 + γ0E(f)] gives the contribution of expected log returns in the exact single factor
model. This breakdown shows that the ã term is quite small, so the single factor model
is an excellent approximation. The 1/2σ2 terms are also small, comforting us that the
phenomenon is really about expected returns not about variances.

Maturity
2 3 4 5

1. At γ0f = E(γ0f)
a. To be explained:

1 E(hprx) + 1
2
σ2 = ã+ b [γ0 + γ0E(f)] 0.39 0.61 0.78 0.72

2 ã 0.13 0.13 0.07 -0.10
3 1

2
σ2 0.02 0.04 0.07 0.11

4 b [γ0 + γ0E(f)] 0.26 0.49 0.70 0.82
b. Explanation

5 level: cov(hprx, ηlevel)
£
λlevel0 + δ(γ0 + γ0E(f))

¤
0.32 0.59 0.85 1.00

6 slope: cov(hprx, ηslope)λslope0 0.06 0.02 -0.08 -0.28
7 Total explained 0.39 0.61 0.78 0.72

2. Effect of a 1σ increase in γ0f :
a. To be explained:

8 Et(hprxt+1)−E(hprx) = bγ0 [σ(f)] 1.19 2.20 3.16 3.72
b. Explanation:

9 level: cov(hprx, ηlevel)
£
δlevel γ0σ(f)

¤
1.19 2.20 3.16 3.72

Table 13. Mean excess returns and their explanation by covariance of
returns with level and slope shocks to yields. Effect on expected returns of
a one standard deviation increase in the return forecasting factor, and its
explanation by covariance times time-varying factor risk premium. Units are
all percentage annual returns.

Rows 5 and 6 show our estimates of covariances times factor risk premia evaluated
when γ0f is at its sample mean. Clearly, the level shock is doing almost all the work.
The main effect of the slope shock is to reduce by 28 basis points the 1% risk premium
on 5 year bond returns predicted by the level shock.
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Next, we turn to the far more interesting issue: time-varying expected returns. Row
8 shows how much expected returns rise when γ0f rises by one standard error above its
mean. These numbers are much larger than the average returns; from 1.2% for 2 year
bonds up to 3.7% expected excess returns on 5 year bonds. Row 9 shows that covariance
with the level shock multiplied by the time-varying risk premium exactly captures this
pattern in time-varying bond expected returns.

To understand the level shock more clearly, we compare it with a factor decomposition
of the yield shock variance covariance matrix. Let

vyt+1 = yt+1 −Et(yt+1)
If we perform an eigenvalue decomposition of the yield shock covariance matrix,

E(vyt+1v
y0
t+1) = QΛQ

0,

where Q satisfies Q0 = Q−1and Λ is diagonal, and then let

Σy = QΛ
1
2 ,

then we can write

vyt+1 = Σyηt+1

where E(ηyηy0) = I . The eigenvalue decomposition produces a factor analysis, with
the orthogonal components that explain in order as much of yield innovation variance as
possible.

Figure 15 presents the eigenvalue decomposition of the yield shock covariance matrix,
the columns of Σy. The lines represents how much each yield rises in response to one of
the orthogonalized unit variance shocks ηt+1. There is one strong “level” shock. There is
a second “slope” shock that lowers short term yields and raises long term yields. Then,
there are three idiosyncratic shocks with strong peaks on the 2, 3, and 4 year yields.
(The largest of these, the two year yield shock, can also be interpreted as a “curvature”
factor. We do not see stronger curvature factors because we do not use yields less than
a year. In most analyses the curvature factor mainly accounts for the difference between
bonds with less and more than a year maturity.) The idiosyncratic shocks are multiplied
by small eigenvalues to produce small loadings in the figure. This leaves us with an
approximate two-factor structure for yield shocks. 3

The comparison between Figure 7 and Figure 15 is striking. The two factors whose
shocks are constructed to explain bond expected returns turn out to be almost exactly
the level and slope factors that dominate the yield covariance matrix. A market price of
risk calculation using the eigenvalue factors of Figure 15 gives almost exactly the same
result as in Table 12.

3A similar exercise for forward rates also produces level and slope factors. The idiosyncratics are a
bit stronger for forward rates. This may be a simple result of smoothing, because yields are a cumulative
average of forward rates. The conditional variance-covariance matrix of excess holding period returns
also produces level and slope factors.
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Figure 8: Eigenvalue decomposition of the restricted yield VAR innovation variance
covariance matrix. The VAR is yt+1 = µy + φyyt + v

y
t+1.The graph presents the columns

of QΛ
1
2 from the eigenvalue decomposition E(vyvy0) = QΛQ0. Each line represents how

yields of various maturities are affected by a unit standard deviation movement in each
orthogonalized shock.

3.3.1 Details of the calculation

Start with a VAR representation for bond yields

yt+1 = µy + φyyt + v
y
t+1

where yt contains all Fama-Bliss yields yt =
h
y
(1)
t , y

(2)
t , y

(3)
t , y

(4)
t , y

(5)
t

i0
. Since this yield

VAR implies return regressions, we use throughout a specification of φy, µy that is con-
sistent with the single factor model for expected returns Et(hprxt+1) = ã+ b(γ0 + γ0ft).
The appendix shows how to calculate this restricted yield VAR and contrasts it with the
unrestricted yield VAR, showing that the restrictions are small.

We search for linear combinations of the yield shocks ηt+1 = w0vyt+1 to be our fac-
tors, covariances with which will exactly explain expected returns. We are looking for
representations of the form

Et(hprxt+1) +
1

2
σ2t (hprxt+1) = covt(hprxt+1, η

0
t+1)λt (23)
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To simplify notation, fold the variance term in the constant,

ã = a+
1

2
σ2t (hprxt+1) (24)

and write the covariance matrix of returns with yield shocks as

C = covt(hprxt+1, v
y0
t+1).

Now we can write (23) as

ã+ b (γ0 + γ0ft) = Cwλt. (25)

(a and b are 5× 1, C is 4× 5, w is 5× 1, λt is a number.)
The single-index model

We start with the case ã = 0, and identify a single shock that would exactly explain
an exact single-factor model, including the constant. We will then identify a second shock
to soak up whatever unconditional average return or variance term that is not explained
by the first shock. As before, we pick the solution to (25)

C 0(CC 0)−1 [b (γ0 + γ0ft)] = wλt

Clearly, λt will have to have a linear form,

λt = δ (γ0 + γ0ft) .

Then we need

C 0(CC 0)−1b = wδ

δ is a number, and the left hand side is a 5 × 1 vector, so this equation ties down the
weights w up to a normalization.

We normalize to unit variance shocks, so

w0E(vv0)w = 1

Hence, we have the weights and the free parameter δ in the factor risk premium

δ =
p
b0(CC 0)−1CE(vyvy0)C 0(CC 0)−1b

w = C 0(CC 0)−1b /δ

A two-index model

Next, we allow for ã 6= 0. We will need a two index model. The procedure is exactly
the same, though the algebra is less transparent because scalars are now vectors and
matrices.
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We are now looking for two shocks, or a 2×1vector ηt+1 = w0vyt+1. We want a solution
to (25),

ã+ b (γ0 + γ0ft) = Cwλt. (26)

in which w is a 5× 2 matrix, and λt is a 2× 2 matrix. Clearly, λt must be of the form
λt = c+ d (γ0 + γ0ft)

where c and d are 2 × 1. Matching the constant and time-varying terms separately, we
have

ã = Cwc; b = Cwd

or £
ã b

¤
= Cw

£
c d

¤
.

We choose the usual solution,

C 0(CC 0)−1
£
ã b

¤
= w

£
c d

¤
C 0(CC 0)−1

£
ã b

¤ £
c d

¤−1
= w (27)

We choose the usual normalization to unit variance orthogonal shocks, cov(ηη0) = I or

w0E(vyvy0)w = I2.

The normalization implies£
c d

¤−10 £
ã b

¤0
(CC 0)−1CE(vyvy0)C 0(CC 0)−1

£
ã b

¤ £
c d

¤−1
= I2

£
ã b

¤0
(CC 0)−1CE(vyvy0)C 0(CC 0)−1

£
ã b

¤
=
£
c d

¤0 £
c d

¤
(28)

Solving this equation for
£
c d

¤
requires and allows one more identification decision.

We specify that the new shock—whose only purpose is to explain the constant — has a
constant risk premium. Thus, we want

£
c d

¤
=

·
λlevel0 δ

λslope0 0

¸
£
c d

¤0 £
c d

¤
=

" ¡
λlevel0

¢2
+
³
λslope0

´2
λlevel0 δ

λlevel0 δ δ2

#

(Of course, we don’t know yet that the shocks will have level and slope interpretation,
but it seems pointless to introduce another notation.) In this way, we can find c and d
from a triangular factorization of the left hand side in (28)
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In sum, we can now calculate the weights wlevel, wslope that define our shocks and the

coefficients λlevel0 , λslope0 , δ that define our exact two-factor representation

ã+ b (γ0 + γ0ft) = Cwlevel
£
λlevel0 + δ (γ0 + γ0ft)

¤
+ Cwslopeλ

slope
0 (29)

The C matrix, the variance term and betas

We still have to find the covariance

C = covt(hprxt+1, v
y0
t+1)

of holding period return shocks with yield shocks. From the definition of excess holding
period returns in terms of yields

hprx
(n)
t+1 = p

(n−1)
t+1 − p(n)t − y(1)t (30)

= −(n− 1)y(n−1)t+1 + ny
(n)
t − y(1)t , (31)

we know that

covt(hprx
(n)
t+1, v

y0
t+1) = −(n− 1)covt(y(n−1)t+1 , vy0t+1)

and thus

C = covt(hprxt+1, v
y0
t+1) = −


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0


We also have the σ2 term in the constant,

cov(hprxt+1, hprx
0
t+1) = CE(vyvy0)C 0

σ2t (hprxt+1) = diag [CE(vyvy0)C 0]

Rather than display the weights w that form the portfolios, it is more interesting to
display how a shock affects yields and returns. We are looking for a representation

vyt+1 = Σηt+1 + εt+1; E(εt+1ηt+1) = 0

The formula for OLS regression coefficients gives us Σ (with σ2(η) = 1),

Σ = cov(vyt+1ηt+1) = cov(v
y
t+1v

y0
t+1)w

The matrix Σ tells us how yields respond to the η shock. Figure 7 graphs the columns of
Σ (one in this case, two in the next case). From (30), we can find how a shock η affects
returns, i.e. the betas. Since C transforms from yields to returns, the answer is of course

hprxt+1 − ã− b [γ0 + γ0ft] = CΣ
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3.4 Expected return shocks

Saying that time-varying expected bond returns result from a time-varying premium on
covariances with the level shock is not a complete answer. We want to know, what more
fundamental risks does the level shock in bond yields represent? To answer this question,
we examine a variety of other shocks in bond yields and macroeconomic variables.

Given that γ0f is the state variable driving expected returns, it makes sense to ask
whether innovations in γ0f are important factors for bond returns. This follows Merton’s
(1973) logic that innovations to state variables for the investment opportunity set ought
to show up as factors. Campbell (1996) Ferson and Harvey (1999) find that innovations
to variables that forecast the market return can explain the cross-section of stock returns;
Brennan Xia and Wang (2001) find that such innovations can explain the Fama-French
size and book to market factors’ ability to price the cross section of stocks. Perhaps a
similar pattern will emerge for bonds.

To pursue this idea, we again start with the yield VAR, restricted so that the im-
plied return regressions follow the single factor model. We orthogonalize the yield shock
covariance matrix, to define shocks ηt+1 such that v

y
t+1 = Σηt+1, E(ηt+1η

0
t+1) = I. We

construct the orthogonalization so that the first shock is the shock to the return fore-
casting factor γ0f . By orthogonalizing with the γ0f shock first, we assign as much of the
market price of risk to the γ0f shock as possible. If the γ0f shock is highly correlated
with the “level” shock derived in the last section, we will assign the market prices of risk
from the level shock to the γ0f shock by this orthogonalization. We define the remaining
shocks by an eigenvalue decomposition of the covariance matrix, which is the easiest way
to construct a factor analysis.

Figure 9 presents the resulting decomposition of the yield variance-covariance matrix
— the columns of the Σ in the representation

yt+1 = µy + φyyt + Σηt+1.

The solid line presents the loadings of yields of each maturity on the expected return
shock. The expected return shock turns out to have almost exactly the character of the
“slope” shock identified above. It also contributes very little to the variance of yields.
The second shock identified after the expected return shock has a “level” character, and
captures the vast majority of yield shock variance.

Table 14 calculates the correlation between the expected return shock ηγ
0f and the

single-index eigenvalue shocks derived in the last section. Together, the table and graph
suggest that the expected return shock is not likely to take over the pricing role of the
previous level shocks. The expected return shock has almost no correlation with the
previous level shock. It is well correlated with the previous slope shock, and so may
be able to take on that shock’s minor role in pricing. By contrast, the new level shock
remaining after the expected return shock is almost perfectly correlated with the previous
level shock, and so is likely to take over that shock’s strong role in pricing.
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Figure 9: Yield shock covariance matrix starting with the expected return shock. The
lines are the columns of Σy in the representation yt+1 = µy + φyyt +Σyηt+1, E(ηη

0) = I.
The first shock η is a shock to the expected return factor γ0f , normalized to unit variance.
The remaining shocks are based on an eigenvalue decomposition of the variance covariance
matrix, after removing the effect of the expected return shock. The solid line presents
the first column of Σy, the response of yields at each maturity to an expected return
shock.

Eigenvalue shocks Single index shocks
level slope y2 y3 y4 level slope

Exp. return γ0f -0.03 0.69 -0.06 0.62 0.36 0.04 0.77
shocks level 0.9996 0.02 -0.00 0.02 0.00 0.999 0.05

Table 14. Correlation of expected return shocks with eigenvalue decom-
position shocks and shocks from the single-index model. In each case we start
with a restricted yield VAR, yt = µy + φyyt−1 + vt, and express the shocks as
vt = Σηt; E(ηη

0) = I. The eigenvalue shocks are identified by an eigenvalue
decomposition of the regression error covariance matrix, QΛQ0 = E(vv0),
Σ = QΛ

1
2 . The expected return shocks are identified so the first shock is the

standardized innovation to expected returns, ηγ
0f
t = k [γ0ft − Et−1 (γ0ft)], k

chosen so σ2(ηγ
0f) = 1. The remaining shocks are identified by an eigenvalue

decomposition (we only show the first such shock, in the “level” row.) The
single index shocks are identified to exactly capture bond expected returns.

Table 15 presents the betas — how bond returns of each maturity respond to these
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shocks. As expected for a slope-shaped shock, the expected return shock generates a
small positive return for short term bonds and a small negative return for long term
bonds. However, the level shock has a much stronger effect on returns of all maturities.

What counts is betas times factor risk premia of course — the level shock might have
no factor risk premium in this decomposition. The bottom half of Table 15 presents the
factor risk premia. The risk premia associated with the expected return factor are small,
and those associated with the level factor are large, and not much changed from Table
10.

Table 16 presents the bond expected return decomposition. The small spread in
unconditional mean returns in the top panel is still almost entirely explained by covariance
with the level shock. The expected return shock takes the place of the small curvature
shock in Table 11. Most dramatically, when γ0f is one standard deviation above its
mean, the dramatic variation across bonds in conditional expected return is all driven
by covariance with the level shock. The expected return shock contributes nothing.

In sum, this is a negative result. It is one worth exploring — innovations to expected
returns are a natural candidate for priced risks. The level shock might have proxied for
the expected return shock. Alas, the expected return shock is small, is nearly uncorrelated
with the level shock, and accounts for none of the risk premium.

γ0f level
100× C: how returns load on shocks

hprx
(2)
t+1 0.28 -1.49 -0.26 -0.06 -0.00

hprx
(3)
t+1 0.19 -2.75 -0.02 0.23 -0.06

hprx
(4)
t+1 -0.22 -3.75 0.11 0.09 0.21

hprx
(5)
t+1 -0.51 -4.69 0.39 -0.16 -0.17

λt = λ0 + δ (γ0ft) factor risk premia
λ0 0.38 1.38 -0.02 -0.05 -0.65
δ -4.3 -31.6 -3.25 4.10 18.6
λ0 + δE (γ0ft) 0.17 -0.20 -0.19 0.16 0.28
λ0 + δ [E (γ0ft) + σ (γ0ft)] 0.06 -1.01 -0.27 0.26 0.76

Table 15. Factor risk premia in bond returns. The first factor is an inno-
vation to the expected return state variable γ0f . The remaining factors come
from an eigenvalue decomposition of the yield innovation variance covariance
matrix.
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γ0f level E(hprx) + σ2

2

Er from λ0 + δE(γ0f)
hprx

(2)
t+1 0.05 0.30 0.05 -0.01 -0.00 0.39

hprx
(3)
t+1 0.03 0.56 0.00 0.04 -0.02 0.61

hprx
(4)
t+1 -0.04 0.76 -0.02 0.01 0.06 0.78

hprx
(5)
t+1 -0.09 0.95 -0.07 -0.02 -0.05 0.72

Effect on Er of 1σ increase in γ0f
hprx

(2)
t+1 -0.02 1.21 0.02 -0.01 -0.00 1.19

hprx
(3)
t+1 -0.02 2.22 0.00 0.02 -0.03 2.20

hprx
(4)
t+1 0.02 3.03 -0.01 0.01 0.10 3.16

hprx
(5)
t+1 0.05 3.79 -0.03 -0.02 -0.08 3.72

Table 16. Decomposition of expected excess bond returns. The units are
percent annual returns. The first five columns give the average returns due
to each factor. In the top panel this is λj × Cij, where λ and C are given in
Table 11. In the bottom panel this is the extra average return when γ0f is
one standard deviation above its mean. This is calculated as δ×Cij×σ(γ0f).
The last column gives the total amount of expected return there is to explain.
The top panel gives the unconditional average return. The bottom panel gives
the effect on expected return of a one standard deviation rise in γ0f . The
E(hprx) + σ2

2
column is equal to the row sum of the first five columns.

3.4.1 Details of the calculation

Denote the yield VAR

yt = µy + φyyt−1 + vt.

¿From f
(n−1→n)
t = −(n − 1)y(n−1)t + ny

(n)
t , we can recover forward rates from yields by

ft = Dyt, with D a matrix of numbers given by equation (50) in the Appendix. Thus,
the shock to γ0f is γ0Dvt+1.We normalize to unit variance shocks, so the shock to γ0f is

ηγ
0f
t+1 =

γ0Dp
γ0DE(vv0)D0γ

vt+1

We find how each yield regression shock vt is affected by the expected return shock ηγ
0f
t+1

by finding the regression coefficients

vt+1 = bηγ
0f
t+1 + εt+1

b = E(vt+1η
γ0f
t+1) =

E(vv0)D0γp
γ0DE(vv0)D0γ

.
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This calculation gives us the first column of Σy in our desired orthogonalization vt+1 =
Σyηt+1. We eigenvalue decompose what’s left over. What’s left over is

vt+1 − bηγ0ft+1 =
µ
I − E(vv

0)D0γγ0D
γ0DE(vv0)D0γ

¶
vt+1,

and its covariance matrix is

E

·³
vt+1 − bηγ0ft+1

´³
vt+1 − bηγ0ft+1

´0¸
=

µ
I − E(vv

0)D0γγ0D
γ0DE(vv0)D0γ

¶
E(vv0)

µ
I − D

0γγ0DE(vv0)
γ0DE(vv0)D0γ

¶
= E(vv0)− E(vv

0)D0γγ0DE(vv0)
γ0DE(vv0)D0γ

.

We decompose this matrix as QΛQ0. The second shock then captures the most variance
subject to the constraint that it is orthogonal to ηγ

0f ; the third captures the most variance
orthogonal to the first two and so forth. If the γ0f shock happened to be the first
eigenvalue of the covariance matrix, the remaining shocks identified in this way will be
the remaining eigenvalues just as before.

3.5 Inflation and monetary policy shocks

The “level” shock in yields which seems to account for the bulk of the time-varying bond
risk premium, is the reflection of some underlying macroeconomic shock. The question
is, what is that shock? We have seen that it is not a shock to expected bond returns.

Since we are studying nominal bonds, inflation is a natural candidate. One of our
biggest questions is, do you earn bond returns for holding inflation risk, or for the risk
that real interest rates change? Has that premium changed as inflation volatility has
declined so dramatically since the late 1970s? To that end, we add inflation to our VAR
consisting of all Fama-Bliss yields and inflation risk.

Of course, inflation is fundamentally only a change of units. Thus inflation shocks
will only be priced if the economy is non-neutral so that inflation shocks have real effects,
or if inflation shocks are correlated with some underlying real shock. For example the
government may choose inflation in response to real shocks, as a way of implementing a
state-contingent default of nominal government debt.

To identify inflation shocks, we order them first, specifying that yields do respond
contemporaneously to inflation shocks, but inflation does not respond contemporaneously
to yields. We can give this identification a structural interpretation if we believe that
goods prices move more slowly than bond prices. If this is true, the contemporaneous
correlation of yield and inflation shocks is due to news moving from inflation to yields and
not vice versa. We also choose this identification in order to assign as much of the risk
premium to inflation as possible. One can always explain returns with returns, and shocks
orthogonal to returns are not needed given the return shocks. Thus, if we orthogonalize
inflation shocks last they get zero risk premium. By orthogonalizing inflation shocks first,
we give them their best shot at explaining bond risk premia.
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Monetary policy shocks are another natural candidate for macroeconomic shocks un-
derlying the term structure. The federal funds rate is largely thought to be under the
control of the Federal reserve. Furthermore, most analysts think that the Fed has the
ability to control real short term rates, which are more likely to induce real holding period
excess returns.

To identify monetary policy shocks, we add federal funds to the yield VAR, ordered
first. Most monetary VARs define monetary policy shocks by forecasting federal funds
rates with a smorgasbord of current and lagged macroeconomic variables and no interest
rates. (For example, Christiano Eichenbaum and Evans 1999.) However, it seems im-
portant for our purposes to include yield information. If the bond markets know a fed
funds change is coming, then it really isn’t a shock, even if the change is unpredictable
by macroeconomic variables. We could include a series of shocks identified by some other
procedure rather than just federal funds. Alas, the policy shocks recovered from a de-
tailed analysis in Piazzesi (2001) do not cover a long enough time period for us to use
them.

The central issue in monetary VARs is orthogonalization; in our case whether a
contemporaneous unpredictable movement in yields and the federal funds rate results
from a policy shock that affects yields, or from a change in longer yields that causes
the Fed to respond with a funds rate change. Fortunately for our purposes we do not
have to take a stand on this issue. We orthogonalize the funds rate shock first, assigning
all contemporaneous correlation to the funds rate shock. As with inflation, this gives
monetary policy shocks their best chance to explain bond risk premia.

Let zt denote either inflation, the log of one-year growth in the consumer price index,
or the federal funds rate in month t. We run a VAR with zt and yields, i.e. with

xt =
h
zt y

(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

i
,

we run

xt = φxt−1 + vt.

As usual, we use an annual horizon and overlapping monthly observations.

Inflation is not of much marginal use in forecasting bond yields or returns as reported
in Table 10. The federal funds rate is even more useless, raising the R2 in forecasting
average returns from 0.397 to 0.398. For this reason, we keep the expected return model

Et
³
hprx

(n)
t+1

´
= a+ bγ0ft intact rather than augment it with inflation or the funds rate.

(Interestingly, the yields do help to forecast inflation and the funds rate.)

We define the inflation or monetary policy shock as the regression error of the z VAR
equation, standardized to unit variance,

ηzt+1 = v
z
t+1/σ(v

z
t+1), z = ff or π.

Table 17 shows how inflation and federal funds shocks affect yields. The pattern in
each case is very much that of a “level” shock. This is a hopeful sign, as the level shock
in yields accounted for most of the risk premium.

43



However, the correlation of the inflation shock with the “level” shock calculated from
the eigenvalue decomposition of the yield-only VAR is only 0.46, foreshadowing that it
will be an imperfect proxy for that shock. The Fed funds shock by contrast has an
impressive 0.83 correlation with the level shock, as well as a decent -0.35 correlation with
the slope shock, foreshadowing that it may well be able to stand in for those shocks in
pricing.

Correlation
Response to π or ff shock with y shocks

zt+1 y
(1)
t+1 y

(2)
t+1 y

(3)
t+1 y

(4)
t+1 y

(5)
t+1 level slope

z = π 1.65 0.77 0.64 0.54 0.50 0.47 0.46 -0.24
z = ff 2.06 1.35 1.15 0.99 0.91 0.84 0.83 -0.35

Table 17. Response of inflation, federal funds, and yields to a unit-variance
shock to either inflation or federal funds, and correlation of inflation and fed
funds shocks with level and slope shocks. We start with a VAR of inflation or
fed funds and bond yields xt = φxt−1+ vt, xt =

£
zt y0t

¤0
, z = φ or ff . The

z shock is the regression error, standardized to unit variance. The response
of all shocks to the z shock is then given by E(vtv

z
t )/σ(v

z
t ). The correlations

give the correlation of z shocks with the level and slope shocks identified from
an eigenvalue decomposition of the yield VAR shock covariance matrix.

The covariance of returns with the z shock is given by cov(hprx
(n)
t+1, η

z
t+1) = (n −

1)cov(v
(n−1)
t+1 , ηzt+1). Now we have all the ingredients to calculate the inflation risk premia

as in (15)-(17),

λ0 = cov(hprxt+1, η
z
t+1)

0covt(hprxt+1)
µ
a+

1

2
σ2t (hprxt+1)

¶
δ = cov(hprxt+1, η

z
t+1)

0covt(hprxt+1)b.

Or estimates are, for the inflation shock, λ0 = 0.43, δ = −12.3 and for the federal
funds shock, larger values λ0 = 0.92, δ = −23.0. As before, we bring these numbers to
life by seeing how much of the conditional and unconditional expected return is accounted
for by the inflation and federal funds shock factor risk premium.

Table 18 presents the results. The first row shows how returns load on the inflation
and federal funds shocks. As with a level shock, longer and longer bonds have larger
negative loadings on the inflation shock. The fed funds shock has larger responses,
because it is better correlated with the level factor that accounts for the bulk of yield
variation.
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hprx
(2)
t+1 hprx

(3)
t+1 hprx

(4)
t+1 hprx

(5)
t+1

C: how returns load on ηπ −0.77 −1.28 −1.63 −1.98
C: how returns load on ηff −1.35 −2.31 −2.99 −3.64
1. At γ0f = E(γ0f) :
Target: E(hprx) + 1

2
σ2 0.39 0.61 0.78 0.72

Er from π shock, C [λ0 + δE(γ0f)] 0.08 0.14 0.18 0.22
Er from ff shock, C [λ0 + δE(γ0f)] 0.31 0.54 0.70 0.85
2. Effect on Er of 1σ larger γ0f
Target: Ethprx+

1
2
σ2 1.19 2.20 3.16 3.72

Etr from π shock, Cδσ(γ0f) 0.21 0.35 0.45 0.54
Etr from ff shock, Cδσ(γ0f) 1.11 1.90 2.46 2.99

Table 18. Contributions of inflation shock and federal funds shock to
expected bond returns.

The unconditional (or conditional at γ0f = E(γ0f))mean returns to be explained
rise from 0.39 % to 0.72 % across maturity, in the “Target” row. The expected returns
explained by the inflation premium are of the right sign, rising from 0.08 to 0.22%, but
roughly a fourth too small across the board. Risk premia on bond shocks orthogonal
to inflation (not shown) account for the rest, and again, the most important factor is a
“level” factor. The federal funds shock does a much better job, however, neatly explaining
the vast majority of the unconditional risk premium

When γ0f rises by one standard deviation, conditional expected returns rise to much
higher values, from 1.19% to 3.72%. The time-varying component of the inflation pre-
mium explains 0.21 to 0.54 percentage points of this rise. Again, the sign is right, but
the magnitude is disappointingly low. Again, the “level” factor orthogonal to inflation
(not shown) still explains most of the time-varying expected return. However, the federal
funds shock is again very successful, explaining the majority of the time-varying expected
return.
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4 Why is this news?

We have found a single factor in bond yields, γ0f that captures all of the substantial
time-varying market price of risk. In the hundreds of studies of the term structure,
how did this factor escape notice? We offer two explanations: 1) Most studies of the
term structure focus on a few factors that explain the bulk of movements in bond yields
or prices. The return forecasting factor does not appear in these exercises. You can
ignore the return forecasting factor, imposing the expectations hypothesis or imposing
much weaker expected return models, and you can describe bond prices or yields with
great accuracy, though you will substantially miss bond expected excess returns. 2) Most
authors study bond returns at a monthly horizon. However, the monthly data are not well
described by an AR(1). Additional lags matter, in a way suggestive of i.i.d. measurement
error. Monthly models raised to the 12th power completely miss the return forecastability.
To see return forecastability at an annual horizon, you have to either look directly at the
annual horizon, as we have, or consider non-Markovian representations of the bond data.

4.1 Yield factors do not capture return predictability

The simplest way to construct a factor decomposition is through an eigenvalue decom-
position of the yield variance covariance matrix.

cov(yy0) = QΛQ0

Then, we can define factors xt by

yt = Qxt

cov(xtx
0
t) = Λ

1
2

This construction maximizes the variance of yields explained by each orthogonal factor
in turn. Table 19 presents our factor decomposition for yields. (This is a factor decom-
position of yields, not of shocks, based on the unconditional covariance matrix of yields,
not of the shock covariance matrix as above.) Our calculation is based on the yield co-
variance matrix implied by the restricted yield VAR; there is an exact one-factor model
γ0f driving expected returns. (Since the restriction is not rejected, the results using an
unrestricted yield VAR are of course very similar.)

Table 19 shows a familiar pattern. The “level” factor which moves all yields together
has by far the largest variance. As one way to characterize the success of potential
restricted-factor models, the “rmse” row of Table 19 calculates the root mean squared
error that would result if you modeled yields as depending only the largest k factors.
We can find market prices of risk λt so that each of these exercises also forms an affine
model, based on the reduced-factor VAR representation, that prices the factors (linear
combinations of yields) by construction.

The root mean squared error of all yields is 3.09%. If you use a model in which
all yields are driven only by the level factor, you have only a 0.49% root mean squared

46



error left. A second “slope” factor moves short rates up and long rates down, but has one
seventh the standard deviation. The level and slope factors together are a very successful
model, leaving only 19 basis points of root mean squared error. Then there are three
small idiosyncratic factors. We have labeled them by the pattern of their weights. For
example, the “2-4,5” factor raises the 2 year yield and lowers the 4,5 year yield. (Since
they are orthogonal to the level factor, the remaining factors are essentially zero-cost
portfolios). One could add the 2-4,5 factor and the 3-4,5 factor to obtain a “curvature”
factor long 2, 3 and short 4, 5.

level slope 2-4,5 3-4,5 4-5

Λ
1
2 6.82 1.01 0.36 0.20 0.10

rmse (total=3.09) 0.49 0.19 0.10 0.04 0.00
y(1) 0.48 0.82 -0.28 -0.09 -0.08
y(2) 0.45 0.03 0.88 -0.15 0.03
y(3) 0.44 -0.19 0.06 0.88 -0.04
y(4) 0.44 -0.31 -0.28 -0.28 0.74
y(5) 0.43 -0.43 -0.24 -0.36 -0.66

Table 19. Eigenvalue decomposition of yield variance-covariance matrix
QΛQ0 = var(yy0) from the restricted VAR. We start with the holding period
return regression restricted to a single factor, hprxt+1 = a + b (γ

0ft) + vht+1.
We find the implied coefficients in a yield VAR, yt+1 = µy+φyyt+v

y
t+1. Then,

we compute var(yy0) = E(vyvy0) + φyE(v
yvy0)φ0y + φ2yE(v

yvy0)φ02y + ...., and
finally take the eigenvalue decomposition var(yy0) = QΛQ0. The row market
Λ

1
2 gives the square root of the eigenvalues. The row marked rmse gives the

root mean squared error of a model that uses only the first k factors. It is
calculated as the square root of the mean of the diagonal elements of QΛkQ0,
where Λk includes only the first k elements of the eigenvalue matrix Λ. The
rows labeled y(1)...y(5) give the eigenvectors Q which tells us how each yield
loads on each shock.

Now, suppose you were faced with these yields. The most natural thing to do would
be to summarize yields by a 2 factor model, with “level” and “slope” factors, and ignore
the idiosyncratics. This would only result in a 19 basis point root mean squared error. In
formal estimation, you might treat that as measurement error. At most, you’d consider
a three factor model, leaving a 10 basis point root mean squared error.

If you were to focus on the big factors in this way, you would miss a substantial part
of the predictability of returns. Table 20 demonstrates this point. The first row of Table
20 presents a regression of average holding period returns 1

4

P5
n=2 hprx

(n)
t+1 on the first,

“level” factor. Even though this is by far the most important factor for yields, the return
forecasting regression yields a miserable 0.07 R2. The last column shows why. Here, we
run a regression of the return-forecasting factor γ0ft on the level factor in yields. The
coefficient in this regression is the same as for holding period returns, so we do not show
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it separately. The R2γ0f captures how well we can approximate the γ
0f return forecasting

factor with the level factor xlevelt . The 0.17 R2 value says the answer is, “not well at
all.” This is not surprising. The return forecasting factor γ0f is a tent-shaped function
of forward rates. It is nearly orthogonal to a level factor in yields.

The second row of Table 20 regresses average excess returns and the return forecasting
factor on the “level” and “slope” factors recovered from the yield variance-covariance
matrix. We had found that γ0f is correlated with slope measures of the term structure,
and term structure slope variables are the classic return forecasters in the literature. We
see some success in the regression coefficients. The -2.8 is much larger than 0.16, so the
slope factor is far more important in forecasting returns. The return forecasting R2 rises
to 0.28, and the R2 in explaining γ0f rises to 0.71.

Still, the level and slope factors, which together leave only a 20 basis point pricing
error, produce only a 0.28 R2 in forecasting returns. As seen by the 0.71R2γ0f a substantial
part of the return-forecasting factor is orthogonal to the level and slope factors in yields.
Given the curved shape of γ, that is not too surprising.

Continuing this way, even the 2-4,5 and 3-4,5 idiosyncratics don’t help all that much.
To get the full 0.40 R2 of the return forecasting factor, we have to look at all the yield
factors. Even ignoring the last yield factor, leaving only a ridiculously small 4 basis point
rmse pricing error, gives us only a 0.31 R2!

level slope 2-4,5 3-4,5 4-5 R2hprx R2γ0f
0.20 0.07 0.17
0.16 -2.8 0.28 0.71
0.17 -2.7 0.61 0.28 0.72
0.16 -2.9 3.2 9.9 0.31 0.79
0.12 -2.8 3.9 6.7 -15.5 0.40 1.00

Table 20. Regressions of average excess returns 1
4

P5
n=2 hprx

(n)
t+1 and of

the return forecasting factor γ0ft on factors xt recovered from an eigenvalue
decomposition of the variance-covariance matrix of yields in the restricted
VAR. The coefficients are the same for both regressions. R2hprx gives the R

2

for the regression that forecasts returns with the factors xt. R
2
γ0f gives the

R2 in the regression of γ0ft on the factors. The factors xt are defined and
characterized in Table 19.

4.1.1 An expected return - expectations decomposition

The yield decomposition suggests that expected returns are not terribly important for
understanding yields. The expectations hypothesis might give a good account of yields
themselves, and getting market prices of risk wrong might have little impact on average
pricing errors.
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To quantify this impression, we construct a different factor model for yields, with γ0f
as the first factor. Then, we can see how well a restricted factor model behaves that
ignores the γ0f factor, and thus sets all expected returns to a constant.

Figure 10 presents the resulting decomposition. The lines marked “expectations hy-
pothesis” are movements in yields driven by all the other factors, orthogonal to γ0f .
Expected returns are, by construction, constant in this component of yields. The lines
marked “expected returns” are movements in yields driven by the γ0f factor. The two
lines add up to the actual yields. The figure shows that the vast bulk of yield variation is
quite well captured by the expectations hypothesis. Long yields are high when expected
future short yields are high.
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Expectations hypothesis

Expected return

Figure 10: Decomposition of yields into a component with constant expected returns
(‘expectations hypothesis’) and a component due to time-varying returns. We construct
a factor model for yields yt = Σxt with E(xx

0) diagnonal and the yield forecasting factor
γ0f as the first component, γ0ft = xt(1). The “expected return” line is then Σ(:, 1) (γ0ft)
and the “expectations hypothesis” term is Σ(:, 2 : 5) ∗ xt(2 : 5).

The first row of Table 21 confirms this impression by computing root mean square
pricing errors of various reduced factor representations. The total root mean square error
is 3.09%. A one-factor model using the expected return factor is a miserable failure,
leaving a 3.00% rmse pricing error. The expectations hypothesis factor model in the “all
others” column, by contrast, leaves a 0.75% pricing error. As usual, the first two level
and slope factors are the most important.
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total just γ0f All others just level level and slope
yields 3.09 3.00 0.75 0.82 0.77
yield spread 1.13 0.88 0.71 1.05 0.73

Table 21. Root mean square errors of yield factor models. “total” gives the
root mean square error of yields, i.e. a factor model consisting of a constant.
“just γ0f” uses only the expected return factor. “All others” uses all other
factors, orthogonal to the expected return factor. “Just level” is a one-factor
model using the first eigenvalue factor after the expected return factor; the
loadings on this factor have a level pattern. “Level and slope” use the first
two eigenvalue factors after the expected return factor.

We might suspect that the expectations hypothesis describes yields well, but misses
yield spreads. After all, yield spreads were the central forecasting variable until γ0f came
along, and are correlated with the γ0f factor. Figure 11 and the second row of Table 21
confirm this impression. The figure plots the spread between n year yields and one year
yields, using the same data as in Figure 10. About half of the yield spread is still due to
pure expectations hypothesis movements. Interestingly that component seems to account
better for a slope in the yield curve. For example, in 1980 and 1987, the expectations
hypothesis components of the spread vary across maturity, while the expected return
components are similar for all maturities. In Table 21, the factor model using only γ0f
leaves an 0.88% rmse error on yield spreads, while all the other factors leave a 0.71 rmse
pricing error.

4.1.2 Calculation

We proceed as we did in constructing the γ0f factor in the innovation covariance matrix,
but applied to the yield covariance matrix. Since f = Dy, our first factor is

xγ
0f
t = γ0f̃t =

γ0Dp
γ0Dcov(yy0)D0γ

ỹt

where ỹ = y−E(y). We have normalized to a unit variance We find how each yield loads
on this factor by finding the regression coefficients,

ỹt = bxγ
0f
t + εt

b =
cov(ỹt, x

γ0f
t )

var(xγ
0f2
t )

=
cov(yy0)D0γp
γ0Dcov(yy0)D0γ

This calculation gives us the first column in our desired factor decomposition yt = Σxt
We eigenvalue decompose what’s left over. What’s left over is

ỹt − bxγ0ft =

µ
I − cov(yy

0)D0γγ0D
γ0Dcov(yy0)D0γ

¶
ỹt
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Figure 11: Decomposition of yield spreads into expected return and expectations hypoth-
esis components. Each spread is taken over the one year rate, i.e. each line is y

(n)
t − y(1)t

.

and its covariance matrix is

cov
³
ỹt − bxγ0ft

´
=

µ
I − cov(yy

0)D0γγ0D
γ0Dcov(yy0)D0γ

¶
cov(yy0)

µ
I − D

0γγ0Dcov(yy0)
γ0Dcov(yy0)D0γ

¶
= cov(yy0)− cov(yy

0)D0γγ0Dcov(yy0)
γ0Dcov(yy0)D0γ

We eigenvalue decompose this matrix to find the remaining factors.

4.1.3 Reconciling yield and expected-return forecasts

These results seem very strange. We made our computations using the restricted yield
VAR. By construction, the yields satisfy an exact one-factor model for expected returns.
If you start with the restricted yield VAR and find the implied regression of returns
on yields (or forward rates) using hprx

(n)
t+1 = −(n − 1)y(n−1)t+1 + ny

(n)
t − y(1)t , the implied

regression of returns on yields satisfies Ethprxt+1 = a + b(γ0ft) = a + b(γ0Dyt) where
D converts from yields to forward rates. γ0Dyt is a scalar, the single factor that drives
expected returns. How can a single factor model for expected returns not show up in
the dominant yield factors? Write the yield VAR

yt+1 = µ+ φyt + Σηt+1.
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The single factor for expected returns must imply strong restrictions on φ. How can this
not show up in the yield factors?

There are three parts to the answer. First, factor structure in the shock covariance
matrix ΣΣ0 is also vital to factor structure in yields. Second, if φ has a single factor
structure, the loadings on a single factor rather than the factor itself will drive φ. Third,
a single factor model for expected returns does not give a single factor model for φ in the
first place.

1. The yield covariance matrix is driven by the shock covariance matrix ΣΣ0 as much
as by φ. The yield variance covariance matrix is given by

cov(yt, y
0
t) = ΣΣ0 + φΣΣ0φ0 + φ2ΣΣ0φ02 + ... (32)

Factor structure in the yield covariance matrix must come from factor structure in the
innovations Σ as well as factor structure in the transition matrix φ. If φ has a factor
structure but Σ does not, the first term will still give us a full rank forward covariance
matrix. If Σ has a factor structure but φ does not, we have a stochastically singular
system, but var(ff 0) will typically be full rank.

We have already seen in Figure 15 that the yield VAR innovation covariance matrix
has a very strong factor structure, with “level” “slope” and very small “idiosyncratic”
shocks. Given this fact and (32), it’s not surprising that the yield covariance matrix also
has a very strong factor structure, with “level” “slope” and small idiosyncratic shocks,
no matter what the factor structure of the transition matrix φ.

2. A single factor model for φ will not show up in factor structures for yields. As a
very simple example to see this point, suppose φ = βγ0, with β and γ both vectors. This
is a single factor model for φ — the single portfolio γ0y carries all forecasting information.
Then

var(yy0) = ΣΣ0 + βγ0ΣΣ0γβ0 + βγ0βγ0ΣΣ0γβ0γβ0 + ...

To make the example even simpler, suppose that Σ is a vector — there is one “level”
shock. Then γ0Σ is a scalar and we can collapse the last term

var(yy0) = ΣΣ0 +
(γ0Σ)2

1− (γ0β)2ββ
0.

In this case, the factor structure in yields is driven by the β loadings on the forecasting
factor γ0y, and the covariance factor structure. It has nothing to do with the γ0y factor
that captures all forecasting information. In this case you would not recover γ0y from
the factors of the yield covariance matrix.

3. A single factor model for returns does not imply a single factor model for yield
forecasts. Let’s try. Starting with Ethprxt+1 = a + bγ0ft we can write a single factor
expected return model in terms of yields as Ethprxt+1 = a + bα

0yt where α0 = γ0D and
D is the matrix that changes from forward rates to yields, (50) in the appendix. Now,

using the definition of holding period return hprx
(n)
t+1 = −(n− 1)y(n−1)t+1 + ny

(n)
t − y(1)t we
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can recover the yield forecast φy. The Appendix goes through the algebra. The answer
((52) in the Appendix) is that the first four rows of φy are given by

φy(1 : 4, :) =


1 0 0 0
0 1

2
0 0

0 0 1
3
0

0 0 0 1
4




−1 2 0 0 0
−1 0 3 0 0
−1 0 0 4 0
−1 0 0 0 5

− bα0


As you can see, even though the one factor structure bα0 is hiding in there, it is subtracted
from another matrix (that matrix adds y(1) back to the excess return) and the result no
longer has a single factor structure.

4.1.4 Moral of the story

If yields or forward rates really do follow an exact factor structure then all state variables
including γ0f have to be functions of that exact factor structure. However, an important
state variable like γ0f can well be hidden in the small idiosyncratic factors that are often
dismissed as minor specification or measurement errors. A factor like γ0f can be the
only important factor for explaining expected returns, and yet explain almost none of
the variance of yields and forward rates. γ0f has not been noticed before, because most
studies first reduce yield data to a small number of factors and then look at expected
returns. To see expected returns, it’s important first to look at expected returns and
then investigate reduced factor structures. A reduced factor representation for yields
that captures the expected return facts in this data should include the level and slope
factors and γ0ft, even though inclusion of the latter will do almost nothing to reduce
pricing errors.

4.2 A monthly model raised to the 12th power does not work

Most term structure estimates focus on a short horizon and then calculate implied values
of longer-horizon statistics. For example, given that our data are monthly, the most nat-
ural approach is to estimate a monthly VAR and find implied values of annual statistics
rather than follow our course, estimating annual VARs with overlapping monthly obser-
vations. A monthly VAR would have the additional advantage that we could include
shorter maturity bond data.

It is also natural to consider today’s yields or forward rates as sufficient state variables
in the term structure, and thus that a VAR(1) representation for yields should be suffi-
cient. If today’s forward rate is the expected future spot rate, then a full set of forward
rates is a sufficient set of state variables for the term structure; neither other variables
nor additional lags can help. Measurement error, missing maturities or risk premia can
overturn this hypothesis of course, so whether a VAR(1) will be sufficient is an empirical
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question. Still, the vast majority of term structure models are Markovian; current yields
are the state variables, additional monthly lags of yields are not used.

In our data, by contrast, a monthly AR(1) raised to the 12th power is disastrously dif-
ferent from direct annual estimates. If you follow the usual approach, you will drastically
underestimate the predictability of annual returns, and you will not see the beautiful
single-factor structure.

The reason is that the monthly data do not follow a VAR(1). We have already seen
that additional monthly lags help to forecast returns. The pattern we see in the data
strongly suggests an ARMA(1,1) induced by i.i.d. measurement error on top of an un-
derlying AR(1). We can reconcile monthly and annual estimates with this specification.
This finding suggests that we will have to include additional lags of yields as state vari-
ables in order to extend the analysis to yields on bonds of less than one year maturity,
or to successfully match our data with a term structure model specified at a horizon less
than a year.

4.2.1 One-year regressions implied by monthly regressions

Consider the VAR in forward rates

ft+1 = µ+ φft + vt+1

(The forward rate VAR is equivalent to the yield VAR. We study forward rates because
the pattern of the coefficients in γ0f is so pretty, and thus it’s easy to see how well forward
rate VAR coefficients approximate the pattern.) Since our data are monthly, we should
be able to run a monthly VAR

ft+ 1
12
= µm + φmft + v

m
t+ 1

12

and then estimate the annual VAR by

φ = φ12m .

There may be some small sample differences in point estimates, but we should not see
any disastrous difference in results. Since return forecasting regression is implied by the
forward rate VAR, we should be able to calculate it from the φ12m coefficients as well as
from the φ coefficients.

Figure 12 contrasts the direct estimates of the forward rate VAR, φ, with the values
implied by the monthly regression, φ12m . In the top, you can see some of the pattern that
occurs when we regress holding period returns on forward rates. If you look hard, you can
see some of that pattern in the bottom panel, though quite distorted. Most strikingly,
though, all the coefficients in the bottom panel are too small.

We’re really after the return regressions, so Figure 13 presents the coefficients in the
regression of one year holding period returns on forward rates. The familiar coefficients
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Figure 12: Coefficients in forward rate VAR at an annual horizon. Coefficients in the top
panel are estimated directly, i.e.the lines are the rows of φ in ft+1 = µ + φft + vt+1. In
the bottom panel, we estimate ft+ 1

12
= µm + φmft + v

m
t+ 1

12

and present the rows of φ12m .

in the top panel are calculated from the annual forward rate VAR φ, and are identical
to direct estimates. The coefficients in the bottom panel are calculated from the implied
forward rate VAR φ12m . The bottom panel is a real disaster. The coefficients implied from
the monthly VAR are much too small. Most importantly, the pattern of the coefficients
is distorted enough that you no longer see the beautiful one-factor structure that jumps
out of the top panel.

Table 22 contrasts the R2 in holding period return regression forecasts from the direct
annual VAR, and from the monthly VAR raised to the 12th power. As you can see, the
implied regression misses a great deal of the forecast power.

hprx(2) hprx(3) hprx(4) hprx(5)

R2 from direct estimate, φ 0.38 0.39 0.41 0.38
R2 from implied estimate, φ12m 0.28 0.28 0.29 0.25

Table 22. R2 in return forecasting regressions hprx
(n)
t+1 = a

(n)+b(n)0ft+ε
(n)
t+1.

In the top row, the regression coefficients and R2 are calculated from the
annual VAR, φ. In the bottom row, the regression coefficients and R2 are
calculated from the monthly VAR raised to the 12th power, φ12m .
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Figure 13: Coefficients in regressions of holding period excess returns hprx
(n)
t+1 on forward

rates ft. The coefficients in the top panel are constructed from the direct estimate of the
annual VAR. They are identical to direct estimates of the regression coefficients. The
coefficients in the bottom panel are constructed from the monthly forward rate VAR
raised to the 12th power, φ12m .

4.2.2 A measurement error interpretation

This pattern in the data suggests an interpretation in terms of measurement error. Sup-
pose a time series yt really follows an AR(1), as most theoretical term structure models
specify. However, suppose yt is observed with i.i.d. measurement error εt. Then, the
observed series xt will follow an ARMA(1,1). Specifically, suppose

yt = φyt−1 + vt
xt = yt + εt.

The autocovariances of the measured series xt are

σ2(x) = σ2(y) + σ2(ε)

cov(xt, xt−j) = φjσ2(y)

The higher order autocorrelations fall off slower than the first autocorrelation ρ1 =

φ σ2(y)
σ2(y)+σ2(ε)

raised to the jth power. This is exactly what we see in comparing the one
month and one year regressions. The sign of the coefficients is right, but the size is much
too small.
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Denote the ARMA(1,1) univariate representation of xt by

xt = φxt−1 + ηt − θηt−1

The autoregressive representation of this ARMA(1,1) — what we see if we regress mea-
sured yields on lagged measured yields — is

xt = (φ− θ)xt−1 + θ(φ− θ)xt−2 + θ2(φ− θ)xt−3 + ...+ ηt

This pattern is reminiscent of our explorations of additional lags in Table 8. The co-
efficients on additional lags had the same sign and pattern (φ − θ), but declined with
horizon.

The obvious next step is to estimate an ARMA(1,1) or more complex models with
a richer specification of measurement error. However, our purpose in this paper is to
characterize risk premia at an annual horizon, so we leave these calculations as an expla-
nation why monthly estimates did not recover the return forecasting factor and a hint of
the issues that must be confronted in order to extend the analysis to shorter maturities
and hence, inevitably, a monthly estimation horizon.
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5 Conclusions

One-year expected excess returns in the Fama-Bliss (1987) data follow a one-factor struc-
ture almost exactly. The single factor is a tent-shaped function of forward rates, γ0ft.
Then, expected excess returns on bonds of maturity n are Et(hprx

(n)
t+1) = an+bn(γ0+γ

0ft),
and even an is quite small.

Regressions of excess returns on this common factor show a much improved R2. In
contrast to Fama and Bliss’ R2 of about 17%, the R2 on the common factor is about
40%, and 45% if we use a one-month moving average of the common factor γ0(ft + ft−1)
to attenuate measurement error.

The single factor γ0f drives out the separate forward-spot spreads in predicting excess
bond returns. The forecast works well across subsamples since 1964. It is somewhat
stronger in the latter part of the sample in which real interest rate movements dominate
the term structure, than in the earlier part of the sample in which much interest rate
movement reflects expected inflation.

The return forecasting factor γ0f has a strong contemporaneous correlation with
business cycle measures, especially the unemployment rate. However, macro variables
do not forecast bond returns, either alone or in competition with the return forecasting
factor. Curiously, the return forecasting factor does not forecast output, unlike the slope
of the term structure. Apparently, the part of the slope that does forecast output is the
part that does not forecast bond returns. The bond return forecasting factor does forecast
stock returns, with a coefficient about what one would expect of a 7 year duration bond.
Its forecast power is maintained in competition with a term spread and dividend price
ratio.

We relate time-varying expected returns to time-varying risk premia with constant
covariances. Almost all of the spread in average bond returns is due to different co-
variances with the level shock, with a small but important contribution from the slope
shock. However, all of the much larger spread in time-varying expected returns is due to
a time-varying premium on the level shock. Innovations to the slope factor γ0f and inno-
vations to inflation do not explain the spread in expected returns across bonds. However,
a time-varying risk premium for monetary policy shocks provides an excellent account of
the time-varying returns we see in the data.

We show that the usual Hansen-Jagannathan (1991) approach to calculating discount
factors that price asset returns by construction extends well to term structure models.
In particular, our time-varying risk premia induce a conditionally homoskedastic affine
term structure model that perfectly replicates bond yields and expected returns.

Why is this news? We think that two habits of the term structure literature have
hid expected return variation. If you find an approximate k factor structure that does a
good job of capturing yields or prices in monthly data, that model will almost certainly
not show the large variation in expected returns at an annual horizon, or the factor
γ0f that drives that return. The expected return factor is small and poorly correlated
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with the level and slope factors that describe most prices and yields. A successful factor
model that captures prices, yields and expected returns must contain level, slope and
γ0f factors, even though the latter will do almost nothing to improving pricing errors.
Furthermore, the monthly data do not satisfy an AR(1), so implied annual regressions
are far off their actual values.
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6 Appendix

6.1 GMM approach to the factor model for expected bond re-
turns

Define ε
(n)
t+1 as the forecast errors from the individual regressions; in the restricted model

ε
(n)
t+1 = hprx

(n)
t+1 − bn (γ0 + γ0ft) ;

in the unrestricted model

ε
(n)
t+1 = hprx

(n)
t+1 − (αn + β0nft) ;

Denote the forecast error from the average return regression

ε̄t+1 =
1

4

X
n

ε
(n)
t+1 =

1

4

X
n

hprx
(n)
t+1 − γ0 − γ0ft,

where ft denotes the right hand variables, the one year yield and forward rates,

ft ≡
h
y
(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t

i0
.

We incorporate the two-step estimate by adding to the vector of moments. This
approach allows us easily to impose the restriction

P
bn = 4. Thus, the moments are

g0T = E
h
ε
(2)
t+1 ε

(3)
t+1 ε

(4)
t+1 ε

(5)
t+1 ε

(2)
t+1f

0
t ε

(3)
t+1f

0
t ε

(4)
t+1f

0
t ε

(5)
t+1f

0
t

1
4

P
n ε

(n)
t+1

³
1
4

P
n ε

(n)
t+1

´
f 0t
i

= E
£
ε0t+1 (εt+1 ⊗ ft)0 ε̄t+1 ε̄t+1f

0
t

¤
We estimate the parameters of the restricted model with the following moment conditions:

E (ε̄t+1) = 0 : γ0
E (ε̄t+1ft) = 0 : γ

E
h
ε
(n)
t+1 (γ0 + γ0ft)

i
= 0 : bn

The GMM formula for the standard error of the estimates is

1

T
(ad)−1aSa0(ad)−10

and the GMM formula for the covariance matrix of the sample moments is

cov(gT ) =
1

T
(I − d(ad)−1a)S(I − d(ad)−1a)0.
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We form the χ2 value for the overidentifying restrictions test by

χ2 = g0T cov(gT )
+gT (33)

where + refers to a pseudoinverse, since the covariance matrix is singular. The degrees
of freedom is the rank of cov (gT )

The elements of these formulas are

a =



ε
(2)
t+1 ε

(3)
t+1 ε

(4)
t+1 ε

(5)
t+1 ε

(2)
t+1f

0
t ε

(3)
t+1f

0
t ε

(4)
t+1f

0
t ε

(5)
t+1f

0
t ε̄t+1 ε̄t+1f

0
t

γ0 0 0 0 0 0 0 0 0 1 0
γ 0 0 0 0 0 0 0 0 0 I5
b2 γ0 0 0 0 γ0 0 0 0 0 0
b3 0 γ0 0 0 0 γ0 0 0 0 0
b4 0 0 γ0 0 0 0 γ0 0 0 0
b5 0 0 0 γ0 0 0 0 γ0 0 0



a =


ε0t+1 (εt+1 ⊗ ft)0 ε̄t+1 ε̄t+1f

0
t

γ0 0 0 1 0
γ 0 0 0 I5
b I4γ0 I4 ⊗ γ0 0 0


(We indicate the moments and parameters outside the matrix for easier reference.)

d = −E



γ0 γ0 b2 b3 b4 b5
ε
(2)
t+1 b2 b2f

0
t γ0 + γ0f 0 0 0

ε
(3)
t+1 b3 b3f

0
t 0 γ0 + γ0f 0 0

ε
(4)
t+1 b4 b4f

0
t 0 0 γ0 + γ0f 0

ε
(5)
t+1 b5 b5f

0
t 0 0 0 γ0 + γ0f

ε
(2)
t+1ft b2ft b2ftf

0
t γ0ft + ftf

0
tγ 0 0 0

ε
(3)
t+1ft b3ft b3ftf

0
t 0 γ0ft + ftf

0
tγ 0 0

ε
(4)
t+1ft b4ft b4ftf

0
t 0 0 γ0ft + ftf

0
tγ 0

ε
(5)
t+1ft b5ft b5ftf

0
t 0 0 0 γ0ft + ftf

0
tγ

ε̄t+1 1 f 0t 0 0 0 0
ε̄t+1ft+1 ft ftf

0
t 0 0 0 0



d = −


γ0 γ0 b0

εt+1 b b⊗E(f)0 I4 ⊗ (γ0 + γ0E (f))
εt+1 ⊗ ft b⊗ E (f) b⊗ E(ff 0) I4 ⊗ [γ0 +E (ftf 0t) γ]

ε̄t+1 1 E(f)0 0
ε̄t+1ft+1 E(f) E(ff 0) 0


If instead we allow a separate intercept an in each second step regression, we have

a =


ε0t+1 (εt+1 ⊗ ft)0 ε̄t+1 ε̄t+1f

0
t

γ0 0 0 1 0
γ 0 0 0 I5
b 0 I4 ⊗ γ0 0 0
a I4 0 0 0
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d = −


γ0 γ0 b0 a0

εt+1 0 b⊗E(f)0 I4 ⊗ [γ0E (f)] I5
εt+1 ⊗ ft 0 b⊗E(ff 0) I4 ⊗ [E (ftf 0t) γ] I4 ⊗E(ft)

ε̄t+1 1 E(f)0 0 0
ε̄t+1ft+1 E(f) E(ff 0) 0 0


We found the JT tests (33) numerically unstable. Thus, we map the unrestricted

model in to this setup so that we can form GMM based Wald tests of the restrictions.
Denote the second step regressions

hprx
(n)
t+1 = αn + β0nft + ε

(n)
t+1

Thus, we can easily test the restrictions by testing whether αn = bnγ0 and/or βn = bnγ
0

Let β =
£
β02 β03 β04 β05

¤
Since there is no cross-effect to γ estimation, we only need

the original set of moments and the a and d matrices are now

a =

 ε0t+1 (εt+1 ⊗ ft)0
α I4 0
β 0 I20



d = −
 α0 β0

εt+1 I4 I4 ⊗ E(f)0
εt+1 ⊗ ft I4 ⊗E(f) I4 ⊗E(ff 0)



6.2 Affine model

6.2.1 Proof of proposition 1

Proposition 1. Let Xt denote a vector of state variables that follows

Xt = µ+ φXt−1 + Σεt

with i.i.d. normally distributed shocks εt and E(εtε
0
t) = I. Let the short rate y

(1)
t be

included in the state vector Xt, y
(1)
t = e01Xt. Let mt+1 be given by

mt+1 = e
−y(1)t −λ0tλt−λ0tεt

where λ is a linear function of Xt, e.g.

λt = λ0 + λ01Xt

Then bond prices, generated by ep
(n)
t = Et(mt+1mt+2...mt+n) are linear functions of the

state variables, i.e. we can find An and Bn such that

p
(n)
t = An +B

0
nXt. (34)
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The affine model is equivalent to risk-neutral pricing with distorted probabilities.

φ∗ ≡ φ− Σλ1 (35)

µ∗ ≡ µ− Σλ0. (36)

We prove the proposition by simply grinding out the conditional expectation of the
discount factor and finding the coefficients An,Bn. In the end, these parameters can be
found recursively from

B0 = 0, A0 = 0

B>n+1 = −e01 +B>n φ∗ (37)

An+1 = An +B
>
n µ

∗ +
1

2
B>nΣΣ

>Bn (38)

where µ∗ and φ∗ are defined from (35)-(36)

Algebra: We guess the form (34) and then show that the coefficients must
obey (37)-(38). The price at time t of a n+ 1 period maturity bond is

P n+1t = Et
£
mt+1P

n
t+1

¤
Thus, we must have

exp
¡
An+1 +B

>
n+1

¢
= Et

·
exp

µ
−rt − 1

2
λ>t λt − λ>t εt+1 +An +B

>
nXt+1

¶¸
(39)

= exp

µ
−rt − 1

2
λ>t λt +An

¶
Et
£
exp

¡−λ>t εt+1 +B>nXt+1¢¤(40)

We can simplify the second term in (40):

Et
£
exp

¡−λ>t εt+1 +B>nXt+1¢¤
= Et

£
exp

¡−λ>t εt+1 +B>n µ+B>n φXt +B>nΣεt+1¢¤
= Et

£
exp

¡
(−λ>t +B>nΣ)εt+1 +B>n µ+B>n φXt

¢¤
= exp

¡
B>n µ+B

>
n φXt

¢
exp

1

2
(−λ>t +B>nΣ)(−λ>t +B>nΣ)>

= exp
¡
B>n µ+B

>
n φXt

¢
exp

1

2
(λ>t λt − 2B>nΣλt +B>nΣΣ>Bn)

Now, continuing from (40):

An+1 +B
>
n+1Xt =

µ
−rt − 1

2
λ>t λt +An

¶
+
¡
B>n µ+B

>
n φXt

¢
+

µ
1

2
λ>t λt −B>nΣλt +

1

2
B>nΣΣ

>Bn

¶
= −rt +An +B>n µ+B>n φXt −B>nΣλt +

1

2
B>nΣΣ

>Bn

= An +B
>
n µ−B>nΣλ0 +

1

2
B>nΣΣ

>Bn − e01Xt +B>n φXt −B>nΣλ1Xt

=

µ
An +B

>
n µ−B>nΣλ0 +

1

2
B>n ΣΣ

>Bn

¶
+
¡−e01 +B>n φ−B>nΣλ1¢Xt.

Matching terms, we obtain (37)-(38).
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Iterating (37)-(38), we can also express the coefficients An, Bn in p
(n)
t = An + B

0
nXt

explicitly as

B>n = −e01
n−1X
j=0

φ∗j = −e01 (I − φ∗n) (I − φ∗)−1 (41)

An =
n−1X
j=0

µ
B>j µ

∗ +
1

2
B>j ΣΣ

>Bj

¶
. (42)

Given prices, we can easily find formulas for yields, forward rates, etc. as linear
functions of the state variable Xt. Yields are just

y
(n)
t = −An

n
− B

>
n

n
Xt.

Forward rates are

f
(n−1→n)
t = p

(n−1)
t − p(n)t

= (An−1 −An)− (Bn−1 −Bn)Xt
= Afn +B

f
nXt

We can find Af and Bf from our previous formulas for An, Bn. From (41) and (42),

Bfn = e
0
1φ
∗n−1 (43)

Afn = −B>n−1µ∗ −
1

2
B>n−1ΣΣ

>Bn−1 (44)

These formulas have quite a simple intuition. In a risk neutral economy, the price of
a two period bond would be

ep
(2)
t = Et

³
e−y

(1)
t −y(1)t+1

´
p
(2)
t = Et(−y(1)t − y(1)t+1) +

1

2
σ2t

³
y
(1)
t+1

´
Now, y

(1)
t = e01Xt and y

(1)
t = e01 (φXt + µ). Thus, in the risk-neutral economy, we expect

p
(2)
t =

·
−e01µ+

1

2
σ2t (y

(1)
t+1)

¸
− e01 (I + φ)Xt

The actual formulas only differ by the difference between φ, µ and φ∗, µ∗ as given by (35)
and (36). Bonds in our economy are priced just as if we were in a risk-neutral (λ = 0)
economy with modified probabilities µ, φ.

Note also in (35) and (36) that λ0 contributes only to the difference between µ and
µ∗, and thus contributes only to the constant term An in bond prices and yields. A
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homoskedastic discount factor can only give a constant risk premium. λ1 contributes
only to the difference between φ and φ∗, and only this parameter can affect the loading
Bn of bond prices on state variables.

The forward rate formula (43) is even simpler. It says directly that the forward rate
is equal to the expected value of the future spot rate and a Jensen inequality term, under
the risk-neutral measure φ∗.

6.2.2 Proof of proposition 2

Proposition 2. Suppose that Xt contains a full set of prices, i.e. suppose that we can

recover prices of 1 through N period bonds from Xt by
h
p
(1)
t p

(2)
t .. p

(N)
t

i0
= PXt.

Then, any λt that solves

Et (hprxt+1) = cov(hprxt+1ε
0
t+1)λt +

1

2
σ2t (hprxt+1) (45)

form a self-consistent affine model; the predicted bond prices by p
(n)
t = An + B

0
nXt are

the same as those recovered directly by PXt.

Of course if any λ that solves (45) works, the particular choice

λt = C 0(CC 0)−1
·
Et(hprxt+1) +

1

2
σ2t (hprxt+1)

¸
.

C = cov(hprxt+1ε
0
t+1)

also works. If the VAR consists of yields, then, for example, the third row of P which
recovers p(3) would be P 03 =

£
0 0 −3 0 ...

¤
.

At an intuitive level, this proposition is obvious. We can always find a price by
discounting its payoff at its own expected return. Thus, if our model correctly captures
all the intermediate expected returns, it must also correctly capture any prices.

We prove the proposition by induction. We show that a discount factor with this
λt prices an n period bond as a one period claim to an n − 1 period bond. Suppose
An−1 = 0, Bn−1 = Pn−1 i.e. the n period bond is correctly priced. Then from (38)-(37),

B0n = −e01 + P 0n−1φ∗ = −e01 + P 0n−1 (φ− Σλ1) (46)

An = P 0n−1(µ− Σλ0) +
1

2
P 0n−1ΣΣ

0Pn−1 (47)

We need to show that if λt = λ0+λ1Xt solves (45), then An = 0 and Bn = Pn. From
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the basic definitions,

hprxt+1 = p
(n−1)
t+1 − p(n)t − y(1)t

cov(hprx
(n)
t+1ε

0
t+1) = cov(p

(n−1)
t+1 ε0t+1) = P

0
n−1Σ

σ2t (hprx
(n)
t+1) = P 0n−1ΣΣ

0Pn−1

Et (hprxt+1) = Et(p
(n−1)
t+1 )− p(n)t − y(1)t = P 0n−1 (µ+ φXt)− P 0nXt − e01Xt

Plugging it all in (45),

P 0n−1µ+ P
0
n−1φXt − P 0nXt − e01Xt = P 0n−1Σλt +

1

2
P 0n−1ΣΣ

0Pn−1

P 0nXt = P 0n−1µ− P 0n−1Σλ0 −
1

2
P 0n−1ΣΣ

0Pn−1 +
¡
P 0n−1φ− P 0n−1Σλ1 − e01

¢
Xt

Collecting constant (An) terms and the terms (Bn) multiplying Xt, we have the required
relations,

0 = P 0n−1 (µ− Σλ0)− 1
2
P 0n−1ΣΣ

0Pn−1

P 0n = P 0n−1 (φ− Σλ1)− e01.

6.2.3 Proof of proposition 3

Proposition 3. Among all market prices of risk λt that price the available bond returns,
or (equivalently) produce a self-consistent affine model, the market prices of risk defined
by

λt = C
0(CC 0)−1

·
Et(hprxt+1) +

1

2
σ2t (hprxt+1)

¸
(48)

produce the minimum value of λ0tλt, the discount factor with minimum volatility, and
the minimum value of the maximum Sharpe ratio. They set to zero the prices of risk of
any shock uncorrelated with bond returns.

This is essentially an application of the Hansen Jagannathan (1991) bound. First we
show that λ0tλt has all the indicated interpretations. Then, we show that the choice (48)
is the minimum value subject to the constraint that λt satisfies

Et (hprxt+1) = cov(hprxt+1ε
0
t+1)λt +

1

2
σ2t (hprxt+1) . (49)

The discount factor is

mt+1 = e
−y(1)t − 1

2
λ0tλt−λ0tεt+1
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Its variance is

σ2t (mt+1) = Et(m
2
t+1)− [Et(mt+1)]

2

= e−2y
(1)
t +λ0tλt − e−2y(1)t

= e−2y
(1)
t

h
eλ

0
tλt − 1

i
.

Therefore, the conditional variance of the discount factor is monotonic in λ0tλt. The
maximum conditional Sharpe ratio of all assets priced by mt+1 is σt(mt+1)/Et(mt+1),
and is minimized when λ0tλt is minimized.

Now, the minimization. The problem is simply minλ0tλt s.t. (49). The first order
conditions are

λt = cov(hprxt+1ε
0
t+1)

0δ = C 0δ

where δ are Lagrange multipliers and C = cov(hprxt+1ε
0
t+1). Evaluating δ in the con-

straint (49),

Et (hprxt+1) = CC
0δ +

1

2
σ2t (hprxt+1)

δ = (CC 0)−1
·
Et (hprxt+1)− 1

2
σ2t (hprxt+1)

¸

λt = C
0 (CC 0)−1

·
Et (hprxt+1)− 1

2
σ2t (hprxt+1)

¸

If a shock is uncorrelated with returns, cov(hprxt+1ε
(i)
t+1) = 0, then λ places no loading

on that shock.

6.3 Forward VAR, yield VAR and return regressions

Denote

ft =


y
(1)
t

f
(1→2)
t

f
(2→3)
t

f
(3→4)
t

f
(4→5)
t

 , yt =

y
(1)
t

y
(2)
t

y
(3)
t

y
(4)
t

y
(5)
t

 ; hprxt =

hprx

(2)
t

hprx
(3)
t

hprx
(4)
t

hprx
(5)
t


Denote the return regression, forward rate VAR ,and yield VAR as

hprxr+1 = a+Bft + Σhη
h
t+1

yt+1 = µy + φyyt + Σyη
y
t+1

ft+1 = µf + φfft + Σfη
f
t+1
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These representations are related as follows. Let

D =


1 0 0 0 0
−1 2 0 0 0
0 −2 3 0 0
0 0 −3 4 0
0 0 0 −4 5

 ;D−1 =

1 0 0 0 0
1
2

1
2
0 0 0

1
3

1
3

1
3
0 0

1
4

1
4

1
4

1
4
0

1
5

1
5

1
5

1
5

1
5

 (50)

Since f
(n−1→n)
t = p

(n−1)
t − p(n)t = −(n− 1)y(n−1)t + ny

(n)
t , we have

ft = Dyt.

yt = D−1ft

Applying D and D−1 to the yield and forward rate VARs, we relate the yield and
forward rate VARs as follows

µf = Dµy; µy = D
−1µf

φf = DφyD
−1; φy = D

−1φfD

Σfη
f
t+1 = DΣyη

y
t+1; Σyη

y
t+1 = D

−1Σfη
f
t+1

Let

M =


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

 ; N =


−1 2 0 0 0
−1 0 3 0 0
−1 0 0 4 0
−1 0 0 0 5


Since hprx

(n)
t+1 = p

(n−1)
t+1 − p(n)t − y(1)t = −(n− 1)y(n−1)t+1 + ny

(n)
t − y(1)t ,

hprxt+1 = −Myt+1 +Nyt
= −M ¡

µy + φyyt + Σyη
y
t+1

¢
+Nyt

= −Mµy −MΣyη
y
t+1 +

¡
N −Mφy

¢
yt

= −Mµy −MΣyη
y
t+1 +

¡
N −Mφy

¢
D−1ft

Thus, given the yield VAR, the return regression is

a = −Mµy
B =

¡
N −Mφy

¢
D−1

Σhη
h
t+1 = −MΣyη

y
t+1

Inversion is a little trickier, because the holding period return regression does not have
any information about y

(5)
t+1, p

(5)
t+1, f

(4→5)
t+1 . Hence, the return regression only identifies the

first four rows of the VARs. Denote

M4 =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 ; M−1
4 =


1 0 0 0
0 1

2
0 0

0 0 1
3
0

0 0 0 1
4

 ; L =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
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M4 is the invertible part of M , and L lops off the last row of a vector or matrix. Lµy,
Lφy, etc. are thus the first four rows of µy, φy, etc. We have M =M4L and hence

a = −M4Lµy

B =
¡
N −M4Lφy

¢
D−1

Σhη
h
t+1 = −M4LΣyη

y
t+1

Lµy = −M−1
4 a (51)

Lφy = M−1
4 (N −BD) (52)

LΣyη
y
t+1 = −M−1

4 Σhη
h
t+1 (53)

6.4 The restricted yield VAR

We construct our restricted yield VAR by estimating the restricted return regressions

hprxt+1 = a+ bγ
0ft + vht+1

and constructing the implied yield VAR from (51)-(52) using B = bγ0 and the a estimate
from the restricted return regression. The last row of the yield VAR, forecasting y

(5)
t+1,

is not restricted by the holding period return regression. The 5 year, holding period
return hprx

(5)
t+1 depends on the price next year of 4 year bonds. Thus, we append the

unconstrained y
(5)
t+1 equation to complete the yield VAR.

Figure 14 compares the restricted and unrestricted yield VAR coefficients φy.

You can see that the regression coefficients are quite close, but not exactly the same.
The big visible difference is the coefficient of the one-year yield on the lagged two year
yield, which is greater by 0.9 in the restricted estimate. The eigenvalue decomposition
is hard to distinguish visually from Figure 15. The idiosyncratic shocks from the unre-
stricted VAR are slightly less important than those shown in Figure 15. The restricted
regression cannot be statistically rejected, unsurprisingly, since this is a linear transfor-
mation of the holding period return regressions. Table A1 presents the R2 values, and
you can see that they are essentially the same.

y(1) y(2) y(3) y(4) y(5)

Restricted 0.624 0.678 0.718 0.741 0.757
Unrestricted 0.629 0.679 0.719 0.742 0.758

Table A1. R2 from restricted and unrestricted yield VARs. The regression
is

yt+1 = µy + φyyt + v
y
t+1
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Figure 14: Regression coefficients φy in a yield VAR, yt+1 = µy + φyyt + ηt+1The top
panel shows unconstrained regression coefficients. The bottom panel shows coefficients
implied by the constrained holding period return regression hprxt+1 = a+ b(γ

0ft) + vt+1
together with an unconstrained regression for the 5 year yield.

The top row is calculated using coefficients implied by the constrained holding
period return regression

hprxt+1 = a+ b(γ
0ft) + vht+1

together with an unconstrained regression for the 5 year forward rate. The
bottom row comes from an unrestricted OLS regression
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