
Discrete Applied Mathematics 119 (2002) 3–36

Tabu search and �nite convergence�

Fred Glovera ; ∗, Sa%&d Hana�b

aHearin Center for Enterprise Science, School of Business Administration, University of Mississippi,
MS 38677 USA

bLAMIH - UMR CNRS no. 8530, Unit(e de Recherche Op(erationnelle et d’Aide +a la D(ecision,
Universit(e de Valenciennes et du Hainaut-Cambr(esis, Le Mont Houy, B.P. 311 - 59304 Valenciennes

Cedex, France

Received 1 October 1999; received in revised form 1 December 2000; accepted 26 January 2001

Abstract

We establish �nite convergence for some tabu search algorithms based on recency memory or
frequency memory, distinguishing between symmetric and asymmetric neighborhood structures.
These are the �rst demonstrations of explicit bounds provided by such forms of memory, and
their �niteness suggests an important distinction between these ideas and those underlying certain
“probabilistic” procedures such as annealing. We also show how an associated reverse elimination
memory can be used to create a new type of tree search. Finally, we give designs for more
e5cient forms of convergent tabu search. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Tabu search; Annealing; Recency memory; Frequency memory; Tree search

1. Introduction

We consider a combinatorial optimization problem stated in the form:

(P) Minimize c(x) subject to x∈X ⊆ E;
where E is the space of potential solutions that satisfy certain fundamental constraints
and X is the set of feasible solutions that must satisfy additional (usually more com-
plex) constraints de�ned by the problem application. The objective function c is a
linear or nonlinear mapping that assigns a real cost value c(x) to each solution x. The
problem is to �nd a globally optimal solution x∗ ∈X such that c(x∗)6 c(x) for all
x∈X .

� Results of this paper were originally presented at the INFORMS meeting, Seattle, 25–28 October, 1998.
∗ Corresponding author. Leeds School of Business, University of Colorado, Campus Box 419 Boulder, CO

80309-0419, USA. Tel.: +1-303-492-8589; fax: +1-303-492-5962.
E-mail address: fred.glover@colorado.edu (Fred Glover).

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(01)00263 -3

4 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Many optimization techniques (both heuristic and exact) for solving problem (P)
are iterative procedures that start with an initial solution (feasible or infeasible) and
repeatedly construct new solutions from current solutions by searching neighborhoods.
The process continues to generate neighboring solutions until a certain stopping cri-
terion is satis�ed. Each solution x∈E has an associated neighborhood N (x), a subset
of E, and the step by which the solution x′ ∈N (x) is reached from the solution x is
called a move.
From a graph perspective an iterative solution search method can be viewed as

a walk in a digraph GN =(V; A) induced by the structure of the neighborhood N ,
where the node set V is the set of solutions E and where an arc (x; x′)∈A exists
if and only if x∈N (x′). Generally, the imprint of the trajectory in graph GN is an
elementary path in the case of local methods (forms of a descent method), while for
certain meta-heuristics the itinerary constitutes a more complex path that may be neither
node-simple nor arc-simple.
The adaptive memory of tabu search (TS) includes a mechanism that forbids the

search to revisit solutions already encountered unless the intervening trajectory is mod-
i�ed [1]. The main goal of memory structures in TS is not simply to forbid cycling,
and in fact, the choice of a given neighborhood and a decision criterion for select-
ing moves with TS can force some solutions to be revisited before exploring other
new ones. An example occurs in a proposal of Glover [2], which identi�es a simple
rule for revisiting solutions accompanied by a conjecture that such a rule has im-
plications for �niteness in the zero-one integer program and optimal set membership
problems. Hana� [3] proves Glover’s conjecture under the assumption that the graph
of the neighborhood space is connected and symmetric. In this paper, we provide new
proofs that yield speci�c bounds establishing the �nite convergence of this TS proposal.
Our results provide insights into the sequences of solutions generated by the search
which disclose interesting contrasts with the more rigid rules underlying tree search
methods. Based on these outcomes, we also give designs for more e5cient forms
of convergent tabu search, and provide special rules that create a new type of tree
search.
The outline of this paper is as follows. Section 2 describes two convergent tabu

search algorithms (CTS) based on recency-memory and frequency-memory, respec-
tively. We show that the complexity of the search diPers according to whether the
neighbor graph GN is symmetric or asymmetric, and for the asymmetric case demon-
strate that the number of steps required by the CTS algorithm to visit all solutions
in X is an exponential function of the cardinality of X . In Section 3, we propose
an approach for accelerating the classical tabu search Aspiration by Default rule in
this setting, which may transform an exponential search into a much faster polyno-
mial search. Section 4 presents a tabu tree search (TTS) for the symmetric case,
with enhancements of TTS for reducing the number of operations that are devoted to
scanning neighbors of solutions visited. Section 5 gives some comparisons with other
approaches in the literature. Finally, some practical considerations are described in
Section 6.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 5

2. A convergent tabu search (CTS) algorithm

2.1. A convergent algorithm based on recency-memory

Let Time(x)= the most recent time (iteration) that solution x was visited by a search
process, whose form is determined as follows.

Initialization assumption (IA). The values Time(x), x∈X , begin as arbitrary non-
negative integers, and the starting solution x∗ for the search is assigned a value so
that Time(x∗)¿Time(x) for all x other than x∗. (The “step counter” that is incre-
mented by 1 at each successive move to determine the new value of Time(x), each
time a solution x is visited, begins at the initial value of Time(x∗).)

This assumption of course includes the case where the method begins with
Time(x)= 0 for all x∈X except x∗.

Method assumption (MA). From any current solution x′, the search will choose next
to visit a previously unvisited solution, x′′ ∈N (x′) if one exists, and otherwise will
choose to visit a solution x′′ =argmin{Time(x): x∈N (x′)}.

Remark 1. By convention, we may de�ne Time(x)= 0 if x has never been visited.
Then MA simpli�es to say that we always move to a solution x′′ that satis�es x′′ =
argmin{Time(x): x∈N (x′)}. (Note x′′ may not be uniquely determined in the set given
by Time(x)= 0.) Moreover, the term Time(x) can be replaced with Time(x′, x), identi-
fying the most recent iteration x was visited from x′, and all the observations following
continue to hold.

The “min{Time(x)} rule” is the one called the Aspiration by Default rule in the TS
literature. This rule might also be called the earliest time stamped neighbor rule, since
the “last label” is a time stamp that tells when a node was visited. This time stamp is
a dynamic one, because the Time stamp label can write over itself, and thus erase an
earlier time stamp. This is important, because if the method under consideration only
used a simple version of an earliest time stamped neighbor rule, without allowing the
time stamp to write over itself, then it might avoid some duplications but it could also
fail to search the entire space.

Neighborhood assumption (NA). X is �nite and there exists a neighborhood path from
every solution in X to every other solution in X .

The three preceding assumptions IA, MA and NA de�ne the framework for a par-
ticular method we will call CTS-Simple. We identify properties of this method as
follows.
Denote the cardinality of X by n= |X |, and consider a value Vn for n¿ 2 which is

given recursively by V2 = 1 and Vn+1 = n(Vn + 1). The value Vn is a very loose upper

6 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

bound for establishing �niteness of a search that operates according to the assumption
MA, given a neighborhood space that satis�es assumption NA.

Theorem 1. Starting from any solution in X; the CTS-Simple method will visit every
other solution in X in a number of steps bounded above by Vn.

Proof. The value V2 is evident. By induction, suppose the theorem is true for a given
value n and consider the case for n+1 (i.e., where |X |= n+1). Let X ′ denote a subset
of X consisting of solutions visited in Vn steps. If X ′ is not X , then by assumption
we are assured that X ′ contains all of X except a single solution x. Assumption NA
implies there exists some x′ ∈X ′ that includes x in its neighborhood.
Let v be the number of steps required to visit x′ the �rst time, where v6Vn. Possibly

x is visited on step v + 1, but if not, step v + 1 visits another solution x′′ ∈X ′, and
Time(x′′) becomes greater than Time(x). Then, either x will be visited in the next
Vn steps or else the search continues to be con�ned to X ′, in which case x′ will be
visited. Continuing in this way, each time x′ is visited but x is not, some x′′ ∈N (x′) is
visited and assigned a value Time(x′′)¿Time(x). Each new x′′ visited from x′ must
be diPerent from all others previously visited from x′, or else Time(x) would have a
value smaller than all other elements of N (x′). The number of times this process can
continue is bounded by |N (x′)|; i.e., after visiting x′ for the �rst time on step v6Vn,
once x′ is visited an additional number of times vAdd6 |N (x′)|−1, the search process
is compelled to move to x on the next step. A count of the number of steps required to
reach x is therefore bounded above by v+ vAdd(Vn+1)+1 (where vAdd is multiplied
by 1 more than Vn because of the extra step that moves from x′ back into X ′ to
restart each round). Given v6Vn, vAdd6 |N (x′)| − 16 n − 1, the number of steps
is bounded by Vn + (n− 1)(Vn + 1) + 1, which equals n(Vn + 1). This completes the
proof.

Remark 2. The considerable looseness of the bound Vn is evident by the fact that it al-
ready gives an overestimate of the number of iterations required by CTS-Simple to per-
form an exhaustive search, even for small values of n. For example, V3 = 2(1+1)=4,
whereas an upper bound of 3 is accurate. Another indication of the looseness of
the bound is that the foregoing proof applies to the case where Time(x) is replaced
by Time(x′; x), though the latter can sometimes involve lengthier search processes.
Note also that the form of assumption MA is not arbitrary. That is, it is easy to
demonstrate that a search may fail to visit all of X if the rule is changed to select
x′′ =argmax{Time(x): x∈N (x′)}.
The bound implied by Vn+1 = n(Vn + 1) is more than n!. We now provide a more

compact proof of the theorem that gives a better bound. De�ne U1 = 0 and de�ne
Un+1 =2Un + 1, for n¿ 1. The bound implied by Un+1 =2Un + 1 may equivalently
be expressed as Un=2n − 1. The theorem holds for this de�nition of the upper
bound Un.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 7

Theorem 2. Beginning with any solution x∗ ∈X; the CTS-Simple method will visit
every solution in X in at most Un steps.

Proof. The theorem evidently holds for n=1 and 2 (and 3). By induction, assume the
theorem is true for |X |6 n, and consider |X |= n + 1. After Un steps, starting from
some solution x∗ ∈X , a set X ∗ containing x∗ has been visited. De�ne N ∗(x)=N (x)∩
X ∗. During the Un steps executed to generate X ∗, each solution x′ that is visited
yields min{Time(x): x∈X ∗}=min{Time(x): x∈X }. (Otherwise, since X contains X ∗,
a smaller min value would occur in X − X ∗, and the method would visit a solution
not in X ∗, contrary to assumption.)
If |X ∗|¡n, then the inductive hypothesis says all of X ∗ was visited in at most Un−1

steps. Clearly, once X ∗ is visited,

Min{Time(x): x∈X ∗}¿Max{Time(x): x∈X − X ∗}:
Continuing for another Un−1 steps, we already know the solutions visited remain en-
tirely in X ∗ and that the choices are exactly as if restricting the neighborhood to N ∗.
Hence, the inductive hypothesis says we will revisit all of X ∗ again. By NA, at least
one of these visited solutions has a solution x′′ ∈X −X ∗ as a neighbor. Since Time(x′′)
¡Time(x) for all x∈X ∗, the solution x′′ will be visited at least by 2Un−1 + 1=Un
steps, contrary to assumption. Thus, we conclude |X ∗|¿ n. If |X ∗|= n + 1, we are
done, so suppose otherwise. Then X − X ∗ contains exactly one element, which again
we denote by x′′. We continue the process for another Un steps, and if x′′ is not visited,
by the same arguments as above we are assured to have visited all of X ∗ again. Like-
wise, as before, x′′ must be a neighbor of some x∈X ∗, and Time(x′′)¡Time(x) for
all x∈X ∗. This insures that x, and hence all of X , will be visited by 2Un + 1=Un+1

steps, thereby completing the proof.

To provide intuitive insight into the nature of “worst case” solution sequences that
can be generated by CTS-Simple and to see how close the method can come to reach-
ing the bound of Theorem 2, a class of examples with symmetric and asymmetric
neighborhood structures is given in Appendix A.

2.2. CTS algorithm based on frequency-memory

Since frequency-based memory is also useful in TS, it is natural to speculate that
a “frequency version” of Theorem 2 is valid. In fact, the preceding proof serves to
establish the result. We apply the natural de�nition, Frequency(x)= the number of
times x has been visited, and replace the method assumption MA by MA′ and the
initialization assumption IA by IA′, which are de�ned as follows.

Initialization assumption (IA′). Given the starting solution x∗ for the search, the val-
ues Frequency(x), x∈X , begin with Frequency(x)= 0 for all x∈X except x∗, and
Frequency(x∗)= 1.

8 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Method assumption (MA′). From any current solution x′, the search will visit a pre-
viously unvisited solution, x′′ ∈N (x′) if one exists, and otherwise will visit a solution
x′′ =argmin{Frequency(x): x∈N (x′)}.

As before, the bound is loose (though tighter than the previous one) and applies by
replacing Time(x) or Frequency(x) by Time(x′; x) or Frequency(x′; x).

Corollary to Theorem 2. The conclusion of Theorem 2 holds when CTS-Simple is
based on frequency memory and the assumptions IS and MA are replaced by IA′

and MA′ as indicated.

The proof of the Corollary is omitted. However, the following remark may be useful.

Remark 3. In the frequency-based version of CTS-Simple, if the solution x has been
visited �|N (x)|+� times, with 06 �¡ |N (x)| then all neighboring solutions of x have
been visited at least � times and there exist � elements in N (x) which have been visited
at least �+ 1 times.

Illustrative examples of the frequency-based version of CTS-Simple also appear in
Appendix A.

3. Acceleration of the Aspiration by Default Rule

In this section, we propose an approach for accelerating the Aspiration by Default
rule, which may transform an exponential search into a much faster search that is
polynomial (or perhaps even linear) in |X |. The modi�ed version incorporates additional
information to gain its bene�ts.

3.1. Generalized assumptions

Since the method assumption (MA) uses only “local” information, it is natural to
generalize MA as follows. De�ne the distance d(x; y) (or more precisely dN (x; y)) as-
sociated with the neighborhood structure N , as the length of a shortest path connecting
x and y, where length is measured as the number of arcs or edges in the path, accord-
ing to whether the neighborhood is asymmetric or symmetric. Thus, the neighborhood
N (x) is extended by the disk Nk(x) centered at node x with radius k which is the set
of all nodes having distance at most k to node x, i.e.

Nk(x)= {y∈X : d(x; y)6 k}:
A simple way to generalize the original version of MA using the Aspiration by

Default rule is to consider all solutions in Nk(x). This version is noted MA-k (where
MA-1 is equivalent to the original version of MA).

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 9

Method assumption (MA-k). From any current solution x′, the search will visit a
neighboring solution, x′′ ∈N (x′), lying on a shortest path of length less than k that
leads to an unvisited solution, if one exists. Otherwise, if all solutions in Nk(x) are
visited, the search will visit a neighboring solution, x′′ ∈N (x′), lying on a shortest
path of length less than k that leads to a solution y′ such that y′ =argmin{Time(y):
y∈Nk(x)}.
A speci�cation of the procedure for the case k =2 is described below.

Method assumption (MA-2). From any current solution x′, the search will visit a so-
lution, x′′ ∈N (x′), by using the following rule:
1. Let x1 = argmin{Time(x): x∈N (x′)}. Move to x1 if it is an unvisited solution

(x′′ = x1). Otherwise,
2. Let x2 = argmin{Time(x): x∈ (N 2(x′)−N (x′))} and let x be a neighbor solution of

both x′ and x2, (i.e., x is one solution on the path between x′ and x2). If x2 is an
unvisited solution, move to the solution x (x′′ = x). Otherwise,

3. If (Time(x1)¡Time(x2)) then set x′′ = x1, else x′′ = x.

In MA-2 the instruction x2 = argmin{Time(x): x∈ (N 2(x′)−N (x′))} can be replaced
by x2 = argmin{min{Time(y): y∈N (x)−{x′}}: x∈N (x′)}. An application of MA-2 is
illustrated in Appendix B. The signi�cant reduction in duplicate labeling is conspicuous,
and becomes increasingly evident as the size of the problem grows.

3.2. A streamlined acceleration procedure

A potential limitation of the preceding acceleration approach is the amount of ePort
required to scan the set of alternatives available at various distances from the current
solution. Enumeration of the possibilities even for solutions that lie only two moves
away can be taxing, by approximately squaring the number of possibilities that lie in
the immediate neighborhood (one move away).
This limitation is partially oPset by the fact that the Aspiration by Default rule

tends to require multiple visits to solutions, and hence larger numbers of steps, only in
situations where the graph is relatively sparse and has special structure. (The examples
given in Appendix A are clearly of this nature.) Denser graphs, with many connections
between solutions, aPord many options for entering and leaving any given solution, and
thus pose a reduced likelihood that any particular node of the graph will be visited
multiple times. As a result, the recourse to the neighborhood Nk(x), at least for k =2,
is relevant primarily in application to sparse graphs, and is not as time consuming as
would otherwise be the case. Even so, the ePort can be greater than might be preferred.
We identify an alternative that approximates the options available for k =2 with

the same order of ePort required to operate simply with the original neighborhood
N (x), thereby eliminating the “squared ePort” ePect. This alternative is based on the
assumption that the degree of each node, i.e., the number of elements in N (x), is
known in advance or is easily determined at the point when x is visited. For example,
in the case of binary solution vectors, where N (x) consists of all binary solutions that

10 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

can be reached by changing a single component of x, the value degree(x) of each node
x is just the dimension of x itself. We also assume we are able to record an “updated”
(modi�ed) value for degree(x), as the search progresses. We do not concern ourselves
with auxiliary data structures or dynamic list management strategies, such as those
provided by the reverse elimination method (REM) of tabu search [2,4,5] in order to
implement the following rules in neighborhood spaces, but continue to describe the
operations directly in terms of the graph structure.

3.2.1. Accelerated procedure based on knowledge of degree(x)

1. The �rst time any given node x is reached during the search, set degree(x′):=
degree(x′)− 1 for each node x′ such that x∈N (x′).

2. If the choice of an unvisited neighbor is not possible (i.e., all neighbors of x have
been visited), choose a neighbor x′ with degree(x′)¿ 0. If degree(x′)= 0 for all
neighbors, then choose x′ by the usual Aspiration by Default rule.

When the foregoing procedure is applied to symmetric graphs, the update of the
recorded node degrees can be modi�ed by setting degree(x′):=degree(x′)− 1 for each
neighbor x′ ∈N (x).
This procedure achieves the same reduction in numbers of solutions visited as the

method based on MA-2 in Section 3.1, while requiring substantially less ePort. Since
such an accelerated approach is primarily useful in connection with sparse graphs, the
scan of all immediate neighbors in step 1 above can be performed without excessive
work. An illustrative comparison of alternative strategies using the preceding ideas is
given in Appendix C.

4. Tabu tree search

The “recency-based” memory commonly employed in tabu search, which is the basis
for the Aspiration by Default rule, can also be applied with a slight change to provide
a form of tree search. As observed in Glover [2], the use of staged decision rules
in tabu search generates a standard form of tree search as a special case. However,
in the present instance, the tree search that results is substantially diPerent. By the
variation subsequently described, for example, we obtain a tabu tree search that departs
signi�cantly from the customary branch-and-bound tree searches such as those used in
popular methods for integer programming.
We continue to focus on the symmetric case unless otherwise speci�ed, and label

each solution x with a value Time(x) which indicates the “time” (iteration) at which
it was visited. In contrast to our previous use of this label, however, we add the
stipulation that as soon as Time(x) is assigned a value (i.e., as soon as x is visited),
we do not permit its value to be further changed. (For simplicity, we do not increase
the “time counter” except as each node is visited for the �rst time, so that the number
of labels generated is at most |X |.) Accompanying this, we now reverse the Aspiration

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 11

by Default rule, to require that, whenever all elements of N (x) have previously been
visited, the method moves from x to the node x′ ∈N (x) that has the largest (rather than
smallest) value of Time(x′), subject to the limitation that this value must be smaller
than that of Time(x) itself.
The resulting method is as follows.

Tabu tree search (TTS)
1. From a given solution x, move to an unvisited neighbor x′ ∈N (x) whenever possible

(i.e., a neighbor for which Time(x′) is not yet determined), and stop if the label
thus assigned to x′ is Time(x′)= |X |. Otherwise,

2. Move to the visited neighbor x′ with the largest value of Time(x′) that is less than
Time(x).

We establish the relevant properties of the method as follows, under the assumption
that the graph of the neighborhood space is connected.

Theorem 3. The TTS method generates a tree; rooted at the initial solution; that
spans the nodes of the neighborhood graph. Each edge of the tree is crossed exactly
once in the direction away from the root; and at most once in the direction toward
the root. (No edges outside of the tree are crossed). In addition:
(a) The unique path from any solution to the root is generated by repeatedly exe-

cuting the rule of step 2 of the TTS method.
(b) Each time any solution x is visited; each labeled neighbor x′ of x is either an

ancestor or descendant of x in the tree currently constructed (i.e.; either x′ lies
on the path from the root to x; or else x lies on the path from the root to x′).

(c) Each time step 2 is executed to reach a visited node x′; all nodes of the graph
that are neighbors of visited nodes x′′; where Time(x′′)¿Time(x′); are also visited
nodes.

(d) Each time step 1 successfully identi9es an unvisited neighbor of x; then node x
satis9es the condition x=Argmax{Time(y): y is a node of the current tree and
y has an unvisited neighbor}.

Proof. We establish the theorem inductively. Except for the claim that the tree spans
the graph, each of the assertions of the theorem is clearly true on all steps until and
including the �rst time that step 2 is executed. At this point the subgraph generated
is a simply path from the root, and step 2 is executed because the node x at the end
of this path has no unvisited neighbors. (We suppose not all nodes are yet reached,
or else the proof is complete.) Furthermore, these assertions remain true if step 2 is
immediately executed again, and remains true throughout all subsequent executions
of step 2 until step 1 is �nally executed. By connectivity, if any unvisited node of
the graph exists, it must be a neighbor of at least one node previously visited, and
the assertion (c) implies we will identify a node of the present tree with access to
an unvisited node. Let x∗ denote the node x′ reached on this execution of step 2,
where x∗ also becomes the node x at the following execution of step 1. Then it

12 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

is clear that x∗ quali�es as the particular node x of the current tree that satis�es
assertion (d).
Given these relationships established to this point, the argument now follows induc-

tively, since we may repeat the same observations relative to the path now generated
from the root through x∗, until �nally reaching a stage where step 2 must again be
executed, proceeding through the identi�cation of a new x∗. The fact that the assertions
are maintained at each earlier step of the construction, and are augmented repetitively
for the path through each new x∗, assures the assertions will continue to hold, and
ultimately that the tree must become a spanning tree.

The theorem immediately permits the following observation.

Remark 4. The values assigned to the labels Time(x) can alternately be changed so
that, instead of increasing each time a new solution x′ is visited in step 1, Time(x′):=
Time(x) + 1. Then the rule for step 2 identi�es x′ to be the solution that yields
Time(x′)=Time(x)− 1. The stopping criterion is changed to stop the process as soon
as all solutions in X are visited.

Note that in the previous TTS procedure the labels Time(x) can be interpreted as
the order of visiting the solution x. With the alternative change proposed in Remark
4, the label Time(x) is equal to the length of the path from the root (initial solution)
to the solution x plus one.
By the labeling of Remark 4, multiple solutions can receive the same label Time(x).

Theorem 3 implies, however, that the solution identi�ed by Time(x′)=Time(x)− 1 in
step 2 is nevertheless uniquely determined. It also implies that no neighbors of a given
solution can have the same label.
An obvious extension of the approach, which adds at most one solution to the

neighbors of any given solution, occurs as follows.

Remark 5. The TTS method can be applied to asymmetric graphs if step 1 is modi�ed
so that N (x′), for the solution x′ selected to be reached by a move from x, is allowed
to be augmented to include the solution x, if x is not already in N (x′).

4.1. TTS and Eexibility of choice

In common with the Aspiration by Default rule, the TTS approach in some cases
may visit all solutions by only visiting each solution a single time, hence ePectively
generating a Hamiltonian path through the neighborhood space, in contrast to the type
of trajectory created by usual forms of tree search. However, more importantly, the
TTS approach allows substantially greater Sexibility of choice than customary types of
tree search, as embodied in branch-and-bound approaches. We illustrate this as follows.

Example: n-dimensional binary vectors
Consider the set X of four-dimensional binary vectors. A standard backtracking

(depth �rst) branch-and-bound approach, where the symbol “∗” denotes an unassigned

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 13

value, generates a sequence such as the following.

By contrast, the TTS approach can create a very diPerent set of solutions. A set
of choices for this example (purposely designed to backtrack as early and as often as
possible) yields the following sequence:

It is also appropriate to keep in mind that the TTS approach can produce diPerent
outcomes depending on the neighborhood structure selected. The preceding illustration

14 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

relies on a neighborhood that changes the value of a single variable at a time. DiPer-
ent forms of search, and diPerent types of “tree structures”, are created for diPerent
neighborhoods, such as those that allow the value of 2 or more variables to be changed
simultaneously.

4.2. Contrasts between TTS and branch and bound

The foregoing example shows not only that the TTS approach generates diPerent
solutions, but that the number of backtracking steps is much smaller than in the
branch-and-bound procedure. In essence, the method runs considerably “deeper” than
branch-and-bound search before encountering a situation where it is necessary to re-
verse its trajectory. On the other hand, customary branch and bound never repeats a
solution, as a result of structuring the tree according to the use of unassigned values.
Every depth �rst branch-and-bound search always follows exactly the pattern illus-

trated in Figs. 1a and 1b except that a variable may �rst branch to 1 rather than to 0,
and the choice of the variable to branch on (i.e., implicitly, the indexing of the vari-
ables) may be changed on forward steps. Variants that generate the branch-and-bound
tree by a diPerent sequence than the depth �rst rule (such as a best bound rule),
can change the order of steps in which branches are created, but still produce the
same tree (disregarding fathoming possibilities that may exclude certain
branches).
On the other hand, the TTS structure diPers according to the choices made —

that is, diPerent choices may produce diPerent numbers of revisited solutions (and, as
previously remarked, some may produce no revisited solutions), thus producing trees
of diPerent topologies.

4.3. Enhanced TTS procedures for graph search

An enhancement of TTS is possible for graph search by maintaining and updating a
record of degree(x), under the same assumptions previously described for maintaining
such a record in applying the Aspiration by Default rule. However, the manner in
which degree(x) is used diPers from the earlier proposal. As an enhancement of TTS,
the reliance on degree(x) does not have the purpose of reducing the number of times
that particular solutions are visited, but rather of reducing the number of operations that
are devoted to scanning neighbors of solutions visited. This second type of reduction
can produce a signi�cant savings in computational ePort, particularly in graphs of
moderately high density. The ability to enhance the TTS approach in this way results
from the fact that the tree predecessor of a given solution remains invariant throughout
the search, and thus the identity of this predecessor can be saved by recording a single
additional item of information for each solution visited. (The complete solution need
not be recorded, as long as su5cient information is retained to recover the solution
directly from its neighbor.) The process is as follows.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 15

4.3.1. Enhanced TTS method

1. The �rst time node x is reached by applying the TTS method, set degree(x′):=
degree(x′)− 1 for each neighbor x′ ∈N (x). In addition, record predecessor(x):=x′,
for the particular neighbor x′ such that x has been reached (�rst) by the move from
x′ to x.

2. Whenever a node x is visited after the �rst time (i.e., x already has been as-
signed a predecessor), check whether degree(x)= 0. If so, immediately execute
step 2 of the TTS method, identifying the solution x′ selected at this step to be
x′:=predecessor(x).

Remark 6. Instruction 2 of the enhanced TTS method always occurs upon executing
step 2 of the original TTS method, since this step is the one that leads to a previously
visited node. Hence, the condition degree(x)= 0 causes step 2 to be executed again
(and setting x′:=predecessor(x) avoids examining the neighbors of x).

The search process is accelerated by avoiding the examination neighbors of x, as
indicated in Remark 6. Clearly, the larger the number of solutions that are visited
before backtracking, the greater the opportunity to save ePort by this approach. If the
search traces a Hamiltonian path, for example, then the approach would eliminate the
examination of neighbors for every node, for a saving of ePort roughly equal to twice
the total number of edges in the graph. In general, although it may be rare for the
search to follow a Hamiltonian path, the fact that a TTS approach typically goes very
deep relative to the starting (root) node, implies that the method is likely to yield
degree(x)= 0 for a considerable number of nodes encountered at earlier depths of the
tree, as a result of visiting their neighbors as descendants later in the search. Graphs
with hub-and-spoke structures, where collections of nodes can reach each other only
by paths that cross one or a small number of edges contained in a “hub” about the
root, will tend to result in setting degree(x)= 0 for a substantial number of nodes in
each collection.
A further enhancement is possible by the device of recording the predecessor as

a complete solution, which is then “passed along” to provide a new neighbor for
other solutions. (In the graph setting, a particular node thus becomes accessed as a
neighbor of other nodes by such a passing operation.) This gives rise to an oppor-
tunity to create a reverse jump, which bypasses a number of backtracking steps, in
cases where the search generates degree(x)= 1 for a string of solutions successively
encountered.

4.3.2. Reverse jump TTS

1. Whenever a node x is visited by the enhanced TTS approach, and degree(x)= 1,
identify the unique unvisited neighbor x′ of x, and pass forward the node
predecessor(x) by assigning predecessor(x′):=predecessor(x) (instead of
predecessor(x′)= x) when x′ is visited.

16 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

2. At each execution of step 2 of the enhanced TTS approach, if degree(x)= 0, then the
assignment x′:=predecessor(x) creates a “reverse jump” to the earliest predecessor
in a string generated by step 1.

By the preceding reverse jump procedure, the backtracking process can avoid inter-
mediate steps that otherwise would require lengthy calculation. Such a variation of the
enhanced TTS approach is likely to be useful for graphs that have “long and skinny”
appendages. It can also be useful in situations where the search progresses from a set
of nodes N ′ to a set N ′′, where for each x∈N ′′, all but one (or a small number) of
neighbors of x lie in N ′.

Remark 7. The reverse jump tabu tree search can be deduced from the enhanced tabu
tree search method by only changing the step 2 as follows: while degree(x)= 0 do
x=predecessor(x).

Appendix C gives an illustrative comparison of alternative enhanced strategies for
TTS.

4.4. Novelty of the TTS method

In spite of the illustrated diPerences between branch and bound and TTS for moving
through the search space, the TTS approach involves no fundamentally new ideas
for achieving a �nite search — in contrast to a TS approach based on using the
Aspiration by Default rule. In terms of a graph search, the TTS approach is an entirely
straightforward form of tree search, which follows a depth �rst design.
There is a misconception in portions of the search literature (often fostered by text-

books in arti�cial intelligence), that all depth �rst methods are essentially the same. We
have already noted the marked contrast between TTS and customary branch-and-bound
procedures (both depth �rst and otherwise), and the implications of this contrast for the
mechanisms that are available for generating an ePective search. One of the most im-
portant diPerences, is the freedom of choice oPered by the TTS approach. The greater
Sexibility to choose values assigned to variables, without having to interrupt the search
by backtracking to earlier (incomplete) solutions, supports the goal of exploiting tai-
lored heuristics to guide the search.
The relevance of this design diPerence can be illustrated by comparing TTS to

another type of depth �rst tree search, called reverse search [6–8]. Reverse search is
a signi�cant form of depth �rst search in applications such as enumerating vertices
of polyhedra. Nevertheless, it restricts the available decisions even more rigidly than
branch and bound, and shares with branch and bound the characteristic of penetrating
only to very limited depths before encountering the necessity of backtracking. The
enhancements we have identi�ed for applying TTS to graph searches in Section 4.4
have no counterparts (and in fact no meaningful interpretation) in the contexts of both
reverse search and branch and bound.
Apart from such distinctions among diPerent forms of tree search, a primary nov-

elty of the TTS approach stems from its ability to be coupled with the REM memory

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 17

procedure developed for tabu search. The illustration of enumerating 0–1 vectors in
Section 4.1, which compares TTS with branch and bound, makes the importance of
this connection clear. Evidently, whenever Sexible choice rules are used (as implicitly
occurs for TTS in this illustration), it is not a trivial matter to identify which binary
solutions are currently available to be visited at each step, nor to identify when back-
tracking becomes necessary. The REM procedure handles these challenges automati-
cally, thus making it possible to apply the TTS method in the context of neighborhood
search without ambiguity. An analysis of relevant considerations, based on a special
channeling concept, is given in Appendix D.

5. Comparisons with other approaches

As a basis of comparison, it is interesting to brieSy consider other proposals for
graph searches. One of the earliest, which has an elegant statement and justi�cation,
is the Tarry Traverse [9]. (An illuminating exposition of this method can be found
in Thompson [10].) In contrast to the approaches described here, the Tarry Traverse
utilizes a memory structure that attaches labels to edges rather than nodes, and crosses
each edge twice, once in each direction. Since the total number of edges in the graph
can be signi�cantly larger than the number of edges in a tree, the amount of ePort (and
memory) in such a traverse is evidently somewhat greater than in the TTS approach.
Charnes and Cooper [11] have remarked that the Tarry Traverse may be used as a basis
for enumerating the extreme points of a linear program. Clearly, as our discussions
show, it is possible to do better.
Another approach worth noting is the reverse search method, brieSy alluded to ear-

lier, which can be applied to exhaustively visit the nodes of a graph. Reverse search
may be viewed as a class of methods, whose members vary by relying upon diPer-
ent evaluation functions that satisfy particular properties. Going beyond these methods,
there exists a broad class of procedures that combine various characteristics of reverse
search with complementary characteristics of branch and bound, to produce searches
with useful properties of memory economy and Sexibility [12]. However, the degree
of Sexibility represented by these approaches is still markedly less than that aPorded
by the TTS design. In this connection, we conjecture that forms of TS based on the
Aspiration by Default rule allow access to a greater variety of search paths than TTS,
with the potential disadvantage that they also admit a larger number of solutions to be
revisited. An analysis of relevant considerations, based on a special channeling concept,
is given in Appendix D.

6. Practical considerations

From a theoretical point of view, a �nite convergence result is “in�nitely bet-
ter” than an in�nite convergence result. For example, the popular convergence in

18 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

probability result of simulated annealing does not assure that an optimal solution will be
found the �rst time in any �nite number of steps: for the purpose of �nding such a solu-
tion the �rst time, the method oPers no advantages over relying on blind randomization.
On the other hand, the magnitude of “�nite” in a �nite method can still be large, and
the primary relevance of a �niteness result depends on providing a structure that can
embrace useful heuristic features. We emphasize the ability to apply the �niteness re-
sults for tabu search processes in a way that allows signi�cant latitude for implementing
associated strategic processes.
By contrast, most of the search literature places great signi�cance on theoretical

foundations involving forms of convergence that are conspicuously not �nite. Rever-
sion to an in�nite guarantee—i.e., one that provides no assurances about convergence
in �nitely bounded time—would be justi�ed if it allowed a wider range of strategic
considerations to be embraced. Yet, ironically, the rationale for these alternative the-
oretical developments has nothing to do with enlarging the range of strategic choice.
Rather, by basing the control mechanisms on randomization, the rationale for the search
becomes farther removed from considerations of strategy. There may be fascination in
the pin of a roulette wheel, but resorting to such a mechanism in combinatorial search
carries the price of abandoning a quest for �niteness.
In summary, the key observations of this paper are: (1) strategic Sexibility is com-

patible with assured �nite convergence, by special forms of memory introduced in
certain forms of tabu search; (2) the resulting search traverses the nodes of a graph
in a signi�cantly diPerent way than provided by tree search; (3) a simple tree search
variant of the approach produces a type of tree search that oPers novel contrasts with
branch and bound, and also diPers notably from other tree searches such as reverse
search and the Tarry Traverse.

Appendix A. Exponential and quadratic paths

In this appendix, we illustrate the behavior of the two versions of CTS-Simple
(recency-based and frequency, respectively) on three classes of examples with sym-
metric and asymmetric neighborhood structures. The two versions of CTS-Simple ap-
plied to the �rst asymmetric example generate an exponential path, which shows the
tightness of the bound provided in Theorem 2.
For each example in the following, we start at node 1, and use the least node index

rule for breaking ties when Time(x)= 0 or Frequency(x)= 0, �nally stopping when
reaching node n. The sequence of labels for each node and the path generated are
given.

Example 1: Exponential path in an asymmetric graph
We construct a digraph Gn= 〈X; A〉, where n is an even number (n=2p), as follows:

• X = {1; 2; : : : ; n}.
• A= {(1; 2); (n; 1)}∪{(2k; 2(k+1)); (2k; 2k+1); (2k+1; 1): for k =1; 2; : : : ; (n−2)=2}.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 19

Fig. 1.

Table 1

Node Labels (visiting time of the node)

1 1 4 8 11 16 19 23 26 32 35 39 42 47 50 54 57
2 2 5 9 12 17 20 24 27 33 36 40 43 48 51 55 58
3 3 10 18 25 34 41 49 56
4 6 13 21 28 37 44 52 59
5 7 22 38 53
6 14 29 45 60
7 15 46
8 30 61
9 31
10 62

Thus the graph Gn has n nodes and (3n − 1)=2 arcs. For example, the graph
G10 (n=10) is shown in Fig. 1. Node 1 forms the base of the graph. Besides, node
1 appear to parallel lines of nodes. The nodes in the line directly beside node 1 are
numbered 2; 4; 6; 8; 10 and the nodes in the adjacent line, just above the �rst line, are
numbered 3; 5; 7; 9.
Path generating rule: Start at node 1, using the Aspiration by Default rule

(min{Time}). Whenever there is a tied choice (because the path is presented with
two choices that both have not yet been visited (Time(x)= 0), choose the node with
the smaller index. Assume that the vector Time has been initialized as follows:

Time(k)=− n+ k − 1; for k =1; : : : ; n:

Table 1 shows nodes and their associated labels which are generated by using an
instance of the graph Gn with n=10. Thus the path �rst goes from 1 to 2, and upon
reaching 2 (where both 3 and 4 are not yet visited), next visits 3. Thereafter, the path
follows the smallest of the previous Time(x) labels, until again reaching a point where
a choice must be made. By the path trace, the method �nally reaches node 10 (i.e.,
node n) at step 62(= 2(n+2)=2 − 2, with n=10).

20 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Fig. 2.

Table 2

Node Labels (visiting time of the node)

1 1 4 10 19 31
2 2 5 8 11 17 20 29 32
3 3 9 18 30
4 6 12 15 21 27 33
5 7 16 28
6 13 22 25 34
7 14 26
8 23 35
9 24
10 36

In the general case, when n is an even number (n=2p), it is easy to observe that
the frequency of the even nodes and odd nodes is the same. Precisely, we have

Frequency(2k − 1)=Frequency(2k)= 2(n−2k)=2 for k =1; : : : ; n=2:

Hence, by summing all the frequencies, the value of Vn is equal to 2(n+2)=2 − 2.

Example 2: Quadratic path in a symmetric graph
Consider a graph of undirected edges, whose structure is similar to that of Example

1, except that the arcs (2k + 1; 1) that connect back to node 1 are replaced by edges
(2k+1; 2(k−1)). The “right column” turns into a “ladder” (or a “saw tooth” structure).
Speci�cally, the graph Gn= 〈X; A〉, has the following form:
• X = {1; 2; : : : ; n}.
• A= {(1; 2); (1; 3)}∪{(2k; 2k+1); (2k; 2k+2); (2k; 2k+3): for k =1; 2; : : : ; (n−2)=2}
For example, the graph G10 is shown in Fig. 2.
Path generation rule: Exactly the same as in Example 1.
Hence the sequence for n=10 is:
1; 2; 3; 1; 2; 4; 5; 2; 3; 1; 2; 4; 6; 7; 4; 5; 2; 3; 1; 2; 4; 6; 8; 9; 6; 7; 4; 5; 2; 3; 1; 2; 4; 6; 8; 10

(Table 2).
In the general case, when n is an even number (n=2p), the frequency of even

nodes is: Frequency(2k)= n − 2k, for k =1; : : : ; (n − 2)=2; and the frequency of odd
nodes is: Frequency(2k+1)= (n−2k+2)=2, for k =1; : : : ; (n−2)=2, and the frequency

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 21

Fig. 3.

of the end node is equal to 1 (Frequency(n)= 1). Thus by summing all frequencies,
the number of steps as a function of n is Vn=(3n2 − 2n+ 8)=2.

Example 3: Quadratic path in a symmetric graph
Construct a digraph Gn=(X; A), where n=5p+ 3, as follows:

• X = {1; 2; : : : ; n}.
• A= {(k; k+1): for k =1; : : : ; n−2}∪{(5k+1; 5k+4); (5k+2; 5k+7): for k =0; 1; : : : ;
p− 1} ∪ {(n− 2; n)}.
For example, the graph G13 (p=2) is shown in Fig. 3.
Path generation rule: Start with node 1, and visit the unvisited nodes in the sequence

1 to n. Then apply the Aspiration by Default (min(Time(x)) rule. (No tie breaking rule
is needed, except as implicit in the beginning sequence from 1 to N .) We assume that
the vector Time has been initialized as follows:

Time(k)=− n+ k − 1; for k =1; : : : ; n:

The following results (nodes and their associated labels) are generated by using
an instance of the graph G with n=13. The �rst column in Table 3 indicates the
node number. The second column shows, for each node, the Time(x) values that the
node receives each time it is visited. The third column indicates the number of times
(frequency) each node has been visited at the end of the process. Hence the sequence
for n=13 is:

1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 7; 2; 1; 4; 3; 2; 7; 6; 5; 4; 1; 2; 3; 4; 5; 6; 9; 8; 7; 12; 11; 13:

By the path trace, the method �nally reaches node 11 (i.e., node n− 2) a second time
at step 33. Since we suppose this node connects to the �nal unvisited node n=13, the
process ends at step 34. Thus, the method visits all nodes after 34 steps (V13 = 34).
In the general case, when n=5p+ 3, the frequency of nodes is:
Frequency(1)=p + 1; Frequency(5k + 1)=2(p − k + 1) − 1 for k =1; : : : ; p − 1;

Frequency(5p+ 1)=2,
Frequency(2)=p+2; Frequency(5k+2)=p−k+3 for k =1; : : : ; p−1; Frequency

(5p+ 2)=2,
Frequency(5k + 3)=p− k + 1 for k =0; : : : ; p,
Frequency(5k+4)=2(p−k) and Frequency(5k+5)=2(p−k)−1 for k =0; : : : ; p−1.
Hence, the number of steps as function of the parameter p is given by Vn=4p2 +

7p + 4, where n=5p + 3. In terms of the number of nodes n, this translates into
Vn=(4n2 + 11n+ 31)=25.

22 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Table 3

Node(x) Time (x) Frequency(x)

Example 2
1 1 4 2
2 2 5 2
3 3 1
4 6 8 2
5 7 1
6 9 11 2
7 10 1
8 12 14 2
9 13 1
10 15 1

Example 3
1 1 15 19 3
2 2 14 18 3
3 3 17 2
4 4 16 20 3
5 5 21 2
6 6 22 2
7 7 13 25 3
8 8 24 2
9 9 23 2
10 10 1
11 11 27 2
12 12 26 2
13 28 1

Below we give the results obtained by applying the CTS-Simple algorithm based
on frequency-memory to the three preceding examples. For Example 1, this algorithm
generates the same sequence described in Table 1, as the one based on recency-memory.
The results obtained for Examples 2 and 3 are described in the following tables.
As shown numerically in those examples, the number of visited solutions with CTS

based on frequency-memory is smaller than the one obtained by CTS-Simple based on
recency-memory, specially for symmetric graphs (Examples 2 and 3).
We give below another example for the asymmetric case, where the bound is poly-

nomial. In this case, the neighborhood graph G= 〈X; A〉 is de�ned by X = {1; 2; : : : ; n}
and A= {(1; k); (k; k − 1): for k =2; : : : ; n}. The initialization step: Let Time(x)=− x,
for x∈X and start the search with the initial solution x∗ =1. It is easy to see that
Vn= n(n− 1)=2 + 1, for n¿ 2.

Appendix B. Illustration of improvement using the accelerated Aspiration by Default
rule

The ePect of applying the accelerated Aspiration by Default rule is demonstrated by
the following tables, which show the label values for the nodes in the three examples
of Appendix A, that result by using MA-2 (Table 4).

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 23

Table 4

Example 1 Example 2 Example 3

x Labels (visiting time of the node) Freq Labels Freq Labels Freq

1 1 4 8 13 16 22 26 29 8 1 1 1 1
2 2 5 9 14 17 23 27 30 8 2 4 2 2 1
3 3 15 28 3 3 1 3 1
4 6 10 18 24 31 5 5 7 2 4 1
5 7 25 2 6 1 5 1
6 11 19 32 3 8 10 2 6 1
7 12 1 9 1 7 1
8 20 33 2 11 13 2 8 1
9 21 1 12 1 9 1
10 34 1 14 1 10 1
11 11 13 2
12 12 1
13 14 1

Note that the gain is appreciable, especially for large problems. In Example 3 with
n=53, the bound obtained by using MA-1 is equal to 474 using MA-2 it is equal to
54. A suitable value of a parameter k depends on the neighborhood structure N and
the size of the problem. (For example, the value max{|N (x)|: x∈X } is a parameter
that may be used to control k.)
Evidently, the number of steps needed to explore all the solutions by using MA-k,

depends on the initial solution chosen. The following table shows an instance of Ex-
ample 3 with n=53. The initial solution x0 has been varied from 1 to n, and we have
compared the bounds generated by the two methods MA-1 and MA-2 (Fig. 4).

Appendix C. Numerical experiments comparing alternative strategies

We have implemented the diPerent strategies for exploring all nodes of a given
connected graph discussed in Sections 3 and 4, using the C programming language,
and with testing performed on a PC Pentium 300. The following Table 5 gives the
names of the codes compared in our experiments.
We represent the input graph used in our implementation as an adjacency list. A

symmetric graph of n nodes is represented by n adjacency lists, one for each node. The
adjacency list for a node x is a list of all nodes y successors of x. For some algorithms
(particularly these described in Section 3), an asymmetric graph is represented by the
set of its nodes and two lists are associated with each node x, one containing the
predecessors, the other the successors of x.
To study the performance and analyze the algorithms, six families of graphs have

been chosen. Table 6 summarizes these families of graphs whose size depends on a
parameter we have denoted by p.
In our implementation, for each graph we start at node 1, and use the “least node

index” rule for breaking ties. We stop when all nodes are visited.

24 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Fig. 4. InSuence of initial solution (Example 3 with n=53).

Table 5

Code name Algorithm

CTS-R Convergent tabu search algorithm based on recency-memory
CTS-F Convergent tabu search algorithm based on frequency-memory
CTS-R-2 Acceleration of the convergent tabu search algorithm based on

recency-memory
CTS-F-2 Acceleration of the convergent tabu search algorithm based on

recency-memory
ACTS-R-2 Approximate CTS-2 procedure based on knowledge of degree and

frequency-memory
ACTS-F-2 Approximate CTS-2 procedure based on knowledge of degree and

frequency-memory
TTS Tabu tree search
E-TTS Enhanced tabu tree search method
RJ-TTS Reverse jump tabu tree search method

In order to compare the results obtained by the accelerated procedure based on
knowledge of degree(x) (ACTS-R-2 and ACTS-F-2), the strategy in the process of
selecting the next solution has been tested as follows. Step 1 chooses the �rst un-
visited solution encountered, and step 2 chooses the �rst neighbor solution x′ with
degree(x′)¿ 0.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 25

Table 6

Class name Brief description Size n=

G1 Exponential path in an asymmetric graph 2p
G2 Exponential path in an asymmetric graph 3p− 1
G3 Quadratic path in a symmetric graph 2p
G4 Quadratic path in a symmetric graph 5p + 3
G5 n-dimensional binary vectors 2p

G6 Tree binary graph 2p − 1

Table 7
Comparison of diPerent strategies

n CTS-R CTS-R-2 ACTS-R-2

G1 2p 2(n+2)=2 − 2 (n3 + 6n2 − 16n + 192)=48 2n=2 + n=2
G2 3p− 1 5(2(n−2)=3)− 3 (n3 + 21n2 − 78n− 62)=162 5(2(n−5)=3) + (n + 1)=3
G3 2p (3n2 − 2n + 8)=2 (3n− 2)=2 (3n− 2)=2
G4 5p + 3 (4n2 + 11n + 31)=25 n + 1 n + 1
G5 2p n
G6 2p+1 − 1 2n− log2(n + 1) 2n− log2(n + 1) 2n− log2(n + 1)

n CTS-F CTS-F-2 ACTS-F-2

G1 2p 2(n+2)=2 − 2 3(2(n−2)=2)− 1 3(2(n−2)=2)− 1
G2 3p− 1 5(2(n−2)=3)− 3 15(2(n−8)=3)− 2 15(2(n−8)=3)− 2
G3 2p 3n=2 (3n− 2)=2 (3n− 2)=2
G4 5p + 3 n + 1 n + 1
G5 2p n n n
G6 2p+1 − 1 (5n− 2 log2(n + 1)− 7)=2 (9n− 4 log2(n + 1)− 15)=4 (5n− 2 log2(n + 1)− 7)=2

n TTS E-TTS RJ-TTS

G3 2p (3n− 2)=2 (3n− 2)=2 (3n− 2)=2
G4 5p + 3 n + 1 n + 1 n + 1
G5 2p n n n
G6 2p+1 − 1 2n− log2(n + 1) [(10n− 3 log2(n + 1) + 1)=6] (3n− 1)=2

For each run of a given code, noted M, two measures are reported:
• V (M): the number of steps needed for visiting all nodes of a given graph; and
• CPU(M): the running time measured in CPU seconds required for visiting all nodes
of the graph, excluding the input times (CPU time for generating the graph) and
output times (the output of the results).
Under the platform con�guration used, a size n¿ 200; 000 of the input graph creates

problems of memory allocation or out-of-range Soating-point values.
The following Table 7 gives the number of steps required for visiting all solutions

in diPerent graphs.

26 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Fig. 5. Asymmetric graph G1 with n=10.

Example 1: Exponential path in an asymmetric graph (G1)
We construct a digraph Gn= 〈X; A〉, where n= |X |=2p, as follows:

• X = {1; 2; : : : ; n}.
• A= {(1; 2); (2p; 1)}∪{(2k; 2(k+1)); (2k; 2k+1); (2k+1; 1): for k =1; 2; : : : ; (n−2)=2}.
Thus the graph Gn has n nodes and (3n − 4)=2 arcs. For example, the graph

G10 (p=5) is shown in Fig. 5.
Tables 8(a) and (b) present results of experiments on this family of graphs G1. These

results show that CTS-R-2 outperforms all other algorithms. The number of steps done
by CTS-R and CTS-F are exactly the same. This is also the case for the CTS-F-2 and
ACTS-F-2 methods. However, the CPU time of CTS-F is slightly greater than the one
with the CTS-R algorithm, but the running times of the ACTS-F-2 method decrease by
roughly a factor of two compared with those of CTS-F-2. Although the performance of
ACTS-R-2 is not good compared with that of CTS-R-2, this method remains interesting
because the number of steps required to visit all solutions and the CPU time is less
than with CTS-R. Comparing CTS-F and CTS-F-2, we observe that the number of
steps required for CTS-F-2 is divided by a factor of two. The disadvantage is that the
CPU times are multiplied by more than two.
The fastest code for this problem family is CTS-R-2. Indeed, for the family of

graphs G1, all algorithms required an exponential number of steps for visiting all nodes
except CTS-R-2 which has required a polynomial number of steps. These experiments
con�rm the accuracy of our estimates for the number of steps needed to scan all
nodes of a graph of type G1 (n=2p) for CTS-R and CTS-R-2 (2(n+2)=2 − 2 and
(n3 + 6n2 − 16n+ 192)=48, respectively).

Example 2: Exponential path in an asymmetric graph (G2)
We construct a digraph G3p−1 = 〈X; A〉, where n=3p− 1, as follows:

• X = {1; 2; : : : ; n}.
• A= {(1; 2); (n; 1)} ∪ {(3k − 1; 3k + 2); (3k − 1; 3k); (3k; 3k + 1); (3k + 1; 1): for
k =1; 2; : : : ; (n+ 4)=3}.
An instance of this digraph G14 (p=5) is given in Fig. 6.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 27

Table 8

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

(a) Number of steps with asymmetric graph G1
10 62 62 34 47 37 47
20 2046 2046 214 1535 1034 1535
30 65,534 65,534 669 49,151 32,783 49,151
40 2,097,150 2,097,150 1524 1,572,863 1,048,596 1,572,863
50 67,108,862 67,108,862 2904 50,331,647 33,554,457 50,331,647
60 2,147,483,646 2,147,483,646 4934 1,610,612,735 1,073,741,854 1,610,612,735

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

(b) Computing time with asymmetric graph G1
10 5 0.00 0.00 0.00 0.00 0.00 0.00
20 10 0.00 0.00 0.00 0.00 0.00 0.00
30 15 0.02 0.01 0.00 0.03 0.01 0.02
32 16 0.03 0.04 0.00 0.08 0.02 0.04
34 17 0.06 0.06 0.00 0.14 0.05 0.06
36 18 0.12 0.13 0.00 0.30 0.09 0.14
38 19 0.24 0.25 0.00 0.58 0.17 0.28
40 20 0.51 0.51 0.00 1.15 0.36 0.55
42 21 1.02 1.02 0.00 2.30 0.71 1.09
44 22 2.05 2.08 0.00 4.72 1.48 2.21
46 23 4.07 4.10 0.00 9.20 2.92 4.40
48 24 8.18 8.17 0.00 18.39 5.84 8.76
50 25 16.23 16.33 0.00 36.85 11.63 17.48
52 26 32.63 32.76 0.00 73.64 23.31 34.97
54 27 65.28 65.45 0.00 147.36 46.68 69.95
56 28 130.29 131.30 0.01 294.48 93.11 140.01
58 29 259.96 261.51 0.01 588.60 186.31 279.53
60 30 521.40 523.44 0.00 1187.04 376.08 560.69

Fig. 6. Asymmetric graph G2 with n=14 (p=5).

The outcomes are almost the same as for Example 1. The small diPerence is that
the CPU time of CTS-F is slightly smaller than that of the CTS-R algorithm.
For this family of graphs, the number of steps required for visiting all nodes, with the

CTS-R algorithm is exponential. More precisely, for a given graph with size n=3p−1,
the number of steps required by CTS-R is equal to 5(2(n−2)=3) − 3. However, the

28 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Table 9

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

(a) Number of steps Vn with asymmetric graph G2
14 5 77 77 41 58 45 58
29 10 2557 2557 251 1918 1290 1918
44 15 81,917 81,917 761 61,438 40,975 61,438
59 20 2,621,437 2,621,437 1696 1,966,078 1,310,740 1,966,078
74 25 83,886,077 83,886,077 3181 62,914,558 41,943,065 62,914,558

(b) Computing times with asymmetric graph G2
14 5 0.00 0.00 0.00 0.00 0.00 0.00
29 10 0.00 0.00 0.00 0.00 0.01 0.00
44 15 0.02 0.02 0.00 0.04 0.01 0.02
47 16 0.04 0.03 0.00 0.08 0.02 0.04
50 17 0.07 0.07 0.00 0.19 0.06 0.08
53 18 0.16 0.15 0.00 0.36 0.11 0.18
56 19 0.31 0.30 0.01 0.71 0.23 0.35
59 20 0.60 0.62 0.00 1.44 0.46 0.67
62 21 1.24 1.21 0.00 2.85 0.92 1.35
65 22 2.46 2.44 0.00 5.69 1.83 2.71
68 23 4.96 4.91 0.00 11.38 3.68 5.41
71 24 9.90 9.84 0.01 23.30 7.38 10.86
74 25 19.76 19.75 0.00 45.50 14.83 22.23
77 26 38.99 39.06 0.00 85.84 26.87 40.31
80 27 78.00 78.18 0.01 171.69 53.73 80.67
83 28 155.98 157.37 0.00 343.25 107.42 161.15
86 29 311.79 312.53 0.00 685.80 214.54 323.00
89 30 499.43 499.87 0.00 1382.78 435.83 653.13

CTS-R-2 algorithm requires a polynomial number of steps, which is equal to (n3 +
21n2−78n−62)=162. The numerical experiments shown in Tables 9(a) and (b) con�rm
the accuracy of the bounds given.

Example 3 Quadratic path in a symmetric graph (G3)
In this example, we consider a graph of undirected edges, whose structure is similar

to that of Example 1, except that the arcs (2k + 1; 1) that connect back to node 1
are replaced by edges (2k + 1; 2(k − 1)). The “right column” turns into a “ladder”
(or a “saw tooth” structure). Speci�cally, the graph Gn= 〈X; A〉, where n=2p, has the
following form:
• X = {1; 2; : : : ; n}.
• A= {(1; 2); (1; 3)}∪{(2k; 2k+1); (2k; 2k+2); (2k; 2k+3): for k =1; 2; : : : ; (n−2)=2}.
For example, the graph G10 (p=5) is shown in Fig. 7.
The number of steps required for visiting all n nodes of the symmetric graph G3 is

quadratic and equal to (3n2 − 2n+8)=2 using CTS-R algorithm. This number of steps
is linear for the other algorithms, that is, it is equal to 3n=2 using the CTS-F algorithm
and equal to (3n − 2)=2 for the rest of the algorithms presented (CTS-R-2, CTS-F-2,
ACTS-R-2, ACTS-F-2, TTS, E-TTS and RJ-TTS). Our numerical experiments in Table
10 con�rm this fact.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 29

Fig. 7. Symmetric graph G3 with n=10 (p=5).

Table 10
Computing times with symmetric graph G3

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

20,000 52.71 0.01 0.03 0.03 0.02 0.02 0.02 0.02 0.02
40,000 264.79 0.03 0.05 0.06 0.05 0.04 0.04 0.04 0.05
60,000 668.37 0.05 0.08 0.09 0.06 0.06 0.05 0.06 0.07
80,000 1,130.51 0.07 0.11 0.12 0.09 0.09 0.06 0.09 0.09
100,000 1,086.86 0.08 0.13 0.13 0.11 0.10 0.09 0.12 0.10
120,000 1,090.22 0.11 0.15 0.16 0.12 0.13 0.10 0.12 0.12
140,000 1,120.31 0.12 0.19 0.19 0.14 0.15 0.12 0.15 0.16
160,000 1,112.22 0.14 0.21 0.22 0.18 0.17 0.13 0.17 0.17
180,000 1,089.16 0.16 0.23 0.24 0.23 0.19 0.16 0.19 0.18
200,000 1,098.09 0.17 0.25 0.27 0.23 0.22 0.16 0.21 0.21

Average 871.32 0.09 0.14 0.15 0.12 0.12 0.09 0.12 0.12

Fig. 8. Symmetric graph G4 with n=13 (p=2).

Regarding the running time, we observe that for the family of graphs of type G3

the 4 algorithms ACTS-R-2, ACTS-F-2, E-TTS and RJ-TTS require almost the same
CPU times. The CTS-R-2 and CTS-F-2 algorithms are equivalent but are worse than
the four methods cited previously. The CTS-R algorithm turns out to be the worst one
for this type of graphs, while CTS-F and TTS algorithms are the best ones.

Example 4: Quadratic path in a symmetric graph (G4)
We construct a graph Gn=(X; A), where n=5p+ 3, as follows:

• X = {1; 2; : : : ; n}.
• A= {(k; k+1): for k =1; : : : ; n−2}∪{(5k+1; 5k+4); (5k+2; 5k+7): for k =0; 1; : : : ;
p− 1} ∪ {(n− 2; n)}.
For example, the graph G13 (p=2) is shown in Fig. 8.

30 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Table 11
Number of steps with symmetric graph G4

n p CTS-R CTS-F CTS-R-2

5003 1000 4,007,004 2,505,698 5004
10,003 2000 16,014,004 10,010,816 10,004
15,003 3000 36,021,004 22,517,042 15,004
20,003 4000 64,028,004 40,021,986 20,004
25,003 5000 100,035,004 62,526,658 25,004
30,003 6000 144,042,004 90,031,974 30,004
35,003 7000 196,049,004 122,539,310 35,004
40,003 8000 256,056,004 160,044,108 40,004
45,003 9000 324,063,004 202,549,054 45,004
50,003 10,000 400,070,004 250,055,332 50,004
100,003 20,000 1,600,140,004 1,000,111,262 100,004

Fig. 9. Comparison between CTS-R and CTS-F algorithms with graph G4.

For a given symmetric graph of type G4 having n=5p+ 3 nodes the 7 algorithms
(CTS-R-2, CTS-F-2, ACTS-R-2, ACTS-F-2, TTS, E-TTS and RJ-TTS) require the
same linear number of steps for visiting all nodes, which is equal to n+1. The CTS-R
algorithm requires a quadratic number of steps equal to (4n2 + 11n+31)=25. Table 11
and Fig. 9 show the comparison of CTS-R, CTS-F and CTS-R-2 algorithms.
Regarding the running times, we observe that for the family of graphs of type G4 the

6 algorithms CTS-R-2, CTS-F-2, ACTS-R-2, ACTS-F-2, E-TTS and RJ-TTS require
almost the same CPU times. The CTS-R and CTS-F algorithms turn out to be the
worst ones for these graphs, while the TTS algorithm is the best one. This is shown
in Table 12 below.

Example 5: n-dimensional binary vectors (G5)
The 5th example is the one where the set of nodes X =p-dimensional binary vectors,

so n= |X |=2p.
The number of steps required for visiting all n=2p nodes of the symmetric graph

G5 is equal to n for the 7 algorithms CTS-F, CTS-F-2, ACTS-R-2, ACTS-F-2, TTS,
E-TTS and RJ-TTS. The remaining 2 algorithms CTS-R and CTS-R-2 require a greater

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 31

Table 12
Computing times with symmetric graph G4

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

5003 1.32 0.82 0.00 0.00 0.01 0.00 0.00 0.01 0.00
10,003 5.44 3.33 0.00 0.00 0.01 0.01 0.00 0.01 0.01
15,003 13.01 7.87 0.01 0.01 0.01 0.01 0.01 0.01 0.01
20,003 23.45 14.45 0.01 0.02 0.01 0.02 0.02 0.01 0.02
25,003 38.91 23.28 0.02 0.02 0.02 0.02 0.01 0.03 0.02
30,003 57.94 35.11 0.03 0.02 0.02 0.03 0.02 0.03 0.03
35,003 82.72 48.91 0.03 0.03 0.03 0.03 0.03 0.03 0.03
40,003 111.64 66.62 0.03 0.03 0.04 0.04 0.03 0.03 0.04
45,003 142.81 84.72 0.04 0.03 0.04 0.04 0.03 0.04 0.04
50,003 186.22 107.66 0.04 0.04 0.05 0.06 0.03 0.05 0.04
100,003 829.62 474.38 0.08 0.08 0.09 0.09 0.07 0.09 0.08
150,003 1,116.72 1,058.40 0.13 0.12 0.13 0.15 0.10 0.13 0.12
200,003 1,152.16 1,069.82 0.17 0.16 0.19 0.19 0.14 0.18 0.15
250,003 1,128.79 1,055.12 0.21 0.21 0.24 0.22 0.17 0.22 0.21

Average 349.34 289.32 0.06 0.06 0.06 0.07 0.05 0.06 0.06

Table 13
Number of steps with symmetric graph G5

n p CTS-R CTS-R-2 CTS-F

16 4 16 16 16
32 5 32 32 32
64 6 95 65 64
128 7 128 128 128
256 8 374 259 256
512 9 853 518 512
1024 10 1727 1031 1024
2048 11 3711 2469 2048
4096 12 8213 4948 4096
8192 13 15,729 8209 8192
16,384 14 33,539 23,027 16,384
32,768 15 73,454 45,756 32,768
65,536 16 156,696 93,150 65,536
131,072 17 303,645 159,170 131,072
262,144 18 662,755 383,121 262,144
524,288 19 1,286,126 908,743 524,288

number of steps. The following Table 13 and Figs. 10–12 compare these 2 algorithms
with CTS-F algorithm.
Concerning the CPU times, we observe that the E-TTS and RJ-TTS algorithms which

are enhancements of TTS give the expected results over this type of graphs, since they
enhance the performance of TTS. CTS-F and CTS-F-2 algorithms require almost the
same CPU times. Among the 9 algorithms tested ACTS-F-2 turns out to be the best
one on this type of graphs, while the worst is the CTS-R algorithm (Table 14).

32 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Fig. 10. Symmetric graph G5 with n=16 (p=4).

Fig. 11. Comparison of CTS-R, CTS-R-2 and CTS-F algorithms with graph G5.

Fig. 12. Complete binary tree G6 (2p+1 − 1) with p=4.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 33

Table 14
Computing times with symmetric graph G5

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

8192 13 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
16,384 14 0.06 0.02 0.14 0.02 0.03 0.03 0.01 0.03 0.04
32,768 15 0.11 0.06 0.30 0.06 0.06 0.06 0.03 0.07 0.08
65,536 16 0.30 0.11 0.78 0.13 0.16 0.16 0.07 0.20 0.18
131,072 17 0.65 0.25 1.10 0.27 0.38 0.35 0.12 0.35 0.34
262,144 18 16.67 0.60 4.64 0.60 0.77 0.74 4.21 1.55 3.31
524,288 19 185.32 36.70 170.12 36.70 31.54 29.57 84.56 59.18 42.66

Average 29.02 5.39 25.30 5.40 4.71 4.42 12.72 8.77 6.66

Example 6: Complete binary tree (G6)
We consider a complete binary tree of height p (n=2p+1−1) represented as follows.

The root corresponds to the node 1, and the left son of node i is the node numbered
with 2i and the right son with 2i + 1. The father of a given node i¿ 1, is the node
[i=2]. In other terms, a complete binary tree of height p is represented by the graph
Gn= 〈X; A〉, where:
• X = {1; 2; : : : ; n}.
• A= {(1; 2); (1; 3)}∪{(k; [k=2]); (k; 2k); (k; 2k+1): for k =2; : : : ; 2p−1}∪ {(k; [k=2])
: for k =2p; : : : ; n}.
For the 4 algorithms CTS-R, CTS-R-2, ACTS-R-2 and TTS the number of steps

required for visiting all n (where n=2p+1−1) nodes of the symmetric graph G6 is equal
to 2n− log2(n+1). The number of steps of the two algorithms CTS-F and ACTS-F-2
as a function of nodes n is given by (5n−2 log2(n+1)−7)=2. The number of steps of
the algorithms CTS-F-2 as a function of nodes n is given by (9n−4 log2(n+1)−15)=4.
The number of steps of the algorithm E-TTS as a function of the parameter p can
be described recursively by V4 = 49 and Vp+1 =2(Vp + 1) + [p=2]. In terms of the
number of nodes n, this translates explicitly into [(10n− 3 log2(n+1)+ 1)=6]. Among
the 9 algorithms tested RJ-TTS turns out to be the fastest one on this type of graph,
which requires (3n − 1)=2 number of steps, while the worst ones are the CTS-F and
ACTS-F-2 algorithms which require the same number of steps. The following Table
15(a) and (b) compares these algorithms.

Appendix D. Fathoming versus informed choice and channeling

One of the strongest advantages of branch and bound, not visible when simply
itemizing all possible solutions, is the ability to avoid examining segments of the tree
by fathoming — i.e., by determining that some branches oPer no possibility of leading
to an improved solution. Usually this is done by solving relaxed problems, easier to
solve than the original, which give useful information about bounds or feasibility. In an
integer programming context, this ability derives from the fact that the decision about
values to be assigned to variables is deferred, and built up incrementally.

34 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Table 15

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

(a) Number of steps with complete binary tree G6
31 57 69 57 61 57 69 57 49 46
63 120 148 120 132 120 148 120 102 94
127 247 307 247 275 247 307 247 208 190
255 502 626 502 562 502 626 502 421 382
511 1013 1265 1013 1137 1013 1265 1013 847 766
1023 2036 2544 2036 2288 2036 2544 2036 1700 1534
2047 4083 5103 4083 4591 4083 5103 4083 3406 3070
4095 8178 10,222 8178 9198 8178 10,222 8178 6819 6142
8191 16,369 20,461 16,369 18,413 16,369 20,461 16,369 13,645 12,286

16,383 32,752 40,940 32,752 36,844 32,752 40,940 32,752 27,298 24,574
32,767 65,519 81,899 65,519 73,707 65,519 81,899 65,519 54,604 49,150
65,535 131,054 163,818 131,054 147,434 131,054 163,818 131,054 109,217 98,302
131,071 262,125 327,657 262,125 294,889 262,125 327,657 262,125 218,443 196,606
262,143 524,268 655,336 524,268 589,800 524,268 655,336 524,268 436,896 393,214
524,287 1,048,555 1,310,695 1,048,555 1,179,623 1,048,555 1,310,695 1,048,555 873,802 786,430

1,048,575 2,097,130 2,621,414 2,097,130 2,359,270 2,097,130 2,621,414 2,097,130 1,747,615 1,572,862

(b) Computing times with complete binary tree G6
2047 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
4095 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00
8191 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.00

16,383 0.01 0.01 0.03 0.03 0.02 0.02 0.01 0.02 0.01
32,767 0.04 0.04 0.06 0.07 0.04 0.05 0.03 0.04 0.03
65,535 0.06 0.07 0.12 0.13 0.09 0.11 0.07 0.08 0.06
131,071 0.14 0.14 0.25 0.27 0.19 0.21 0.15 0.16 0.12
262,143 0.28 0.33 0.49 0.54 0.39 0.43 0.28 0.33 0.24
524,287 0.54 0.61 0.96 1.11 0.77 0.87 0.60 0.66 0.50

1,048,575 30.25 3.16 1.99 2.36 1.62 1.85 13.47 13.19 7.40

Average 3.13 0.44 0.39 0.45 0.31 0.36 1.46 1.45 0.84

Yet this advantage comes with an associated disadvantage. The fewer the decisions
that have been made (i.e., the fewer the variables that have been assigned values), the
less complete is the information available about good values to assign to remaining
variables. Consequently, in some settings this lack of information can lead to poor
choices at early stages of the tree, and the inappropriateness of such choices can take
a long time to discover. (In such cases, the inSuence of the poor choices is not only
inherited by a large set of descendants, but the search may generate no information to
suggest that the poor choices are indeed inferior, and that the branching alternatives in
their part of the tree should be visited “out of sequence”, as by a best bound rule.)
On the other hand, the type of approach that generates a full solution at each step,

as illustrated in the earlier example of the TTS approach, aPords fuller information
about the contribution of each variable (given the values of the others). Thus, there is
a certain advantage of “informed choice” available, even if this information is highly
local in nature.

F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36 35

There is also another feature of the type of neighborhood-based search structures
embodied in TTS and TS (with the Aspiration by Default rule), in contrast to the more
usual branch-and-bound approaches. This derives from a conjecture that neighborhood
structures often have a form that allows the search to be restricted to only a small
part of the neighborhood space by following certain channels through it, which are
collectively guaranteed to have access to optimal solutions. Under such circumstances,
the �niteness guarantee applicable to the full space is likewise applicable to the reduced
(channeled) space. The process of strategically selecting and following channels, which
we call channeling, can signi�cantly diminish the combinatorial complexity of the
search and still oPer the bene�t of a �niteness guarantee.
The concept of channeling can be understood by considering as an example the

special case of a 0-1 multidimensional knapsack problem (a maximization problem
with less-than-or-equal-to constraints and all problem coe5cients nonnegative). In this
instance, it is clear that candidates for optimal solutions can be restricted to those
that are as close as possible to the feasibility boundary, in the sense that no variable
currently 0 can be changed to 1 (in an ePort to move the solution closer to the
boundary), except by violating feasibility. Thus a channel of solutions that hugs the
boundary, moving just far enough away to allow access to other solutions that are
appropriate candidates, is both strategically useful and oPers a high likelihood of leading
to an optimal solution. Channels that are allowed to penetrate to controlled depths on
a given side of the feasibility boundary, or alternately on both sides, can be made
subject to the �niteness rules we have identi�ed. (These variable depth excursions,
organized in relation to selected critical boundaries or regions, are the basis of the
tabu search approach called strategic oscillation.) The allowance for channels that
include moves through infeasible regions typically permits the channel width — the
degree of departure from the feasibility boundary — to be reduced. In contexts more
general than multidimensional knapsack problems, paths that traverse infeasible regions
are often not merely useful but essential.
It is important to note that the channel tracing process cannot be done ePectively

by ordinary branch and bound. The reason stems from the following phenomenon:
the region that demarcates a channel boundary characteristically is encountered by the
“end branches” of a branch and bound tree. Accordingly, if variables whose branches
appear earlier in the tree must change their values in order to progress along a promis-
ing channel, this can only be done by eliminating all decisions that are descendants
of such branches, and then building up again a new set of decisions (by creating ex-
tensions of the alternatives to these branches). That is, the branch and bound type
of tree search cannot stay within the channel region, because to progress between
points that are contiguous within this region requires reverting to earlier parts of the
tree (jumping out of the region). Modifying the values of earlier assigned variables
is the only way to re-construct the access to the desired part of the channel. (An ef-
fort to shortcut the process either looses the tree structure or amounts to abandoning
the branch and bound staging for exactly the kind of procedure we identify as an
alternative.)

36 F. Glover, S. Hana9 /Discrete Applied Mathematics 119 (2002) 3–36

Channeling operates in diPerent ways for diPerent kinds of problems. The unifying
feature of these applications is that channels leading to optimal solutions may be ex-
pected to involve an exploration of a much smaller portion of the space than would be
generated by a full enumeration. This theme is similar to the type of expectation that
exists in applying branch and bound, where the itemization of some limited number of
alternatives is anticipated to succeed in reaching an optimal solution (in this case via
fathoming). However, the mechanisms and the rationale leading to the expectation of
a reduced search are entirely diPerent for channeling than they are for the fathoming
process of branch and bound. Whether one or the other of these expectations becomes
more likely to be ful�lled will unquestionably depend on the setting. The relevance
of channeling, as a strategy that oPers a set of advantages contrasting with those of
branch-and-bound fathoming, is worth heeding.

References

[1] F. Glover, M. Laguna, Tabu search, Kluwer Academic Publishers, Dordrecht, 1997.
[2] F. Glover, Tabu search, Part 2, ORSA J. Comput. 2 (1990) 4–32.
[3] S. Hana�, On the convergence of tabu search, Working paper, University of Valenciennes, France,

1998, J. Heuristics, to appear.
[4] F. Dammeyer, S. Voss, Dynamic tabu list management using the reverse elimination method, Ann.

Oper. Res. 41 (1993) 31–46.
[5] S. Hana�, A. FrXeville, Extension of reverse elimination method through a dynamic management of the

tabu list, R.A.I.R.O., to appear.
[6] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and

polyhedra, Proceedings of the Seventh ACM Symposium on Computational Geometry, North Conway,
New Hampshire, 1991a, pp. 98–104.

[7] D. Avis, K. Fukuda, A basis enumeration algorithm for linear systems with geometric applications,
Appl. Math. Lett. 5 (1991b) 39–42.

[8] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 6 (1996) 21–46.
[9] G. Tarry, Le problYeme des labyrinthes, Nouv. Ann. Math. 14 (3) (1895) 187–190.

[10] G.L. Thompson, The Tarry Traverse, Class notes, Carnegie-Mellon University, Graduate School of
Industrial Administration, 1998.

[11] A. Charnes, W.W. Cooper, Mathematical Models and Industrial Applications of Linear Programming,
Vol. I, Wiley, New York and London, 1961, pp. 438–444.

[12] F. Glover, S. Hana�, Composite tree searches for global optimization, Research Report, Graduate School
of Business and Administration, University of Colorado, Boulder, 1998.

